
February 1999, Volume 5, Number 2

ON THE COVER
6 Searching for Records — Cary Jensen, Ph.D.
Dr Jensen takes on a topic nearly every Delphi developer can benefit from:
efficient data retrieval. Three general approaches are described and tested
for speed: sequential searches, TDataSet search methods, and parameter-
ized SQL SELECT queries. The time-trial results may surprise you.

FEATURES
10 Informant Spotlight
MTS Development: Part III — Paul M. Fairhurst
Concluding his three-part series on Microsoft Transaction Server, Mr
Fairhurst turns to some advanced aspects of MTS, such as security,
DCOM, transactions, callbacks, and more.

17 Algorithms
Hash It Out — Rod Stephens
Mr Stephens provides three Delphi implementations of hash tables,
data structures that allow you to quickly store and retrieve items
based on a key.

23 Columns & Rows
Multi-tier Database Applications: Part II —
Thomas J. Theobald
Last month, Mr Theobald described the steps for planning and building
multi-tier database applications. This month, he turns to the implemen-
tation, i.e. get set for some code.

28 The API Calls
For Your Eyes Only — Mujahid Beg
Mr Beg demystifies the Microsoft Cryptographic Application
Programming Interface (CryptoAPI for short), and shares a
tCryptography class to make its use from Delphi easier.

Cover Art By: Darryl Dennis

33 Greater Delphi
The BDE Made Easy — Bill Todd
Mr Todd describes an extraordinarily useful — and economical —
technique for sharing the Borland Database Engine over a network,
while retaining maximum flexibility from application to application.

38 At Your Fingertips
They Were There All Along — Robert Vivrette
Uncovering some useful gems from the SysUtils unit, Mr Vivrette shares
tips for handling command-line parameters, searching for multiple files,
and replacing multiple instances of text.

REVIEWS
40 LEADTOOLS Imaging 10

Product Review by Warren Rachele

44 Delphi 4 Bible
Book Review by Warren Rachele

DEPARTMENTS
2 Delphi Tools
4 Newsline
45 File | New by Alan C. Moore, Ph.D.

1 February 1999 Delphi Informant

2 February 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

PRICE Systems Announces ForeSight 2.0

HyperAct Announces eAuthor Help 3.05

Mastering Delphi 4
Marco Cantù

SYBEX

IISSBBNN:: 0-7821-2350-3
PPrriiccee:: US$49.99 (1,247 pages)

http://www.sybex.com

Charlie Calvert’s
Delphi 4 Unleashed

Charlie Calvert
SAMS Publishing

IISSBBNN:: 0-672-31285-9
PPrriiccee:: US$49.99

(1,152 pages, CD-ROM)
http://www.samspublishing.com
PRICE Systems, L.L.C.
announced ForeSight 2.0, the
newest version of its project
management software solution
for forecasting time, effort,
and costs for commercial and
non-military government soft-
ware projects.
The Project Wizard includes

a Quick Estimate feature,
which enables users to develop
a first-glance forecast by
answering a few critical ques-
tions. This estimate may be
used to specify a project’s costs
as new information becomes
available.
The new version includes a

Microsoft Project 98 interface,
which uses Component
Object Model (COM) archi-
tecture. Using this interface,
users can interface any
ForeSight 2.0 project created
with Project 98. COM further
enables ForeSight 2.0 to oper-
ate within an integrated enter-
prise environment.

Other benefits of ForeSight
Pervasive Announces Dev
2.0 include more implementa-
tion tools, including complexi-
ty profiles for Delphi, Visual
J++, PowerBuilder, JavaScript,
VBScript, HTML, and
FrontPage; more application
types in the Project Wizard
selection screen, including
Internet, Text Processing,
Database, Human Resources,
Logistics, Management, Office
Productivity, Operating
elopers Kit
Systems, and Telecommuni-
cations applications; and Auto
Lock ability to protect entered
or changed values and unlock
these values.

PRICE Systems, L.L.C.
Price: US$975 per single-user license;
bulk rate and site license pricing are
available.
Phone: (800) 43-PRICE
Web Site: http://www.pricesystems.com
HyperAct, Inc. announced
eAuthor Help 3.05, the com-
pany’s template-based RAD
authoring tool for HTML
Help, hard-copy documents,
Web sites, and HTML-based
e-mail messages.

eAuthor Help 3.02 includes
a WYSIWYG editor, HTML
code editor, hierarchical pro-
ject view, instant preview,
object inspector, and proper-
ty editors. The product
comes with royalty-free
HTML Help deployment
controls for Delphi,
C++Builder, Visual Basic,
MFC, and other environ-
ments.

New templates are created
easily with the included tem-
plate composer, including
wizards. The product also
includes a comprehensive
SDK for software integration.

HyperAct, Inc.
Price: US$250
Phone: (402) 891-8827
Web Site: http://www.hyperact.com
Pervasive Software Inc.
announced the Pervasive.SQL
Software Developers Kit
(SDK), a set of rapid applica-
tion development resources,
including the I*net Data
Server, ActiveX controls, a
pure Java API, and support
for Windows development
environments to speed
development of applica-
tions based on Pervasive’s
embedded database
engine.
The I*net Data Server

utility lets developers
write Pervasive.SQL-
based applications and
run them as Web- or
Internet-based
client/server solutions.
Developers can create a
single-user workstation,
as well as Internet-based
mobile applications,
without cumbersome
scripting languages or multi-
layered data access methods.

Applications built on
Pervasive.SQL integrate with
third-party database controls,
such as APEX True DBGRID
and Sheridan Data Widgets.

Pervasive.SQL SDK also
features the Pervasive.SQL
Workstation Engine,
Developer’s Resource Center,
ODBC Driver, and a Java
Class Library.

Pervasive Software Inc.
Price: US$295
Phone: (800) 287-4383
Web Site: http://www.pervasive.com

http://www.sybex.com
http://www.samspublishing.com
http://www.pricesystems.com
http://www.hyperact.com
http://www.pervasive.com

3 February 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Lingscape Announces MultLang Suite 2.11 for Delphi and C++Builder

Wise Introduces Installation Suites
Lingscape Ltd. announced
MultLang Suite 2.11, a new
version of the company’s
globalization tool for Delphi
and C++Builder.

MultLang is based on the
Unicode standard, and, com-
bined with a conversion
engine, provides support for
Japanese, Chinese, Arabic,
Hebrew, Hungarian, Russian,
and all European languages.

The integration with the
IDE and compiler helps pro-
duce thin, localized EXEs, or
link multi-language support
into the same EXE.

The Universal Language
Modules API can contain
context-sensitive dictionaries
that are self-describing and
have their own interface.

The MultLang Suite 2.11
contains a quality assurance
wizard, which keeps projects
from showing defect user
interfaces, and checks for
workable short cuts, correct
character set displayed,
approval of translated
works, etc.

This new version has a
migration utility to collect
and re-use globalizations
Automagic Ships Y2K Co

WetStone Announces SM
made from other products or
implementations, such as
Inprise Delphi Translation
Suite. You may instantly turn
these into multi-language
projects without writing
additional code.
mponents

ARTCrypt 1.2
MultLang Suite 2.11 works
with Delphi 2, 3, and 4 and
C++Builder 1 and 3.

Lingscape Ltd.
Price: US$998
Web Site: http://www.lingscape.com
Wise Solutions, Inc.
announced three new instal-
lation suites: InstallMaker,
InstallBuilder, and
InstallMaster. New features
include enhancements for
installation scripting, soft-
ware patching, repackaging,
and Web deployment.

InstallMaker provides
point-and-click steps that
allow developers to create
basic Windows installation
programs in minutes without
writing any code.
InstallMaker includes Wise
Installation System 7.0 plus
SmartPatch, which creates
compact installation patches.

InstallBuilder builds more
sophisticated installations,
with script-writing capability.
InstallBuilder includes Wise
Installation System 7.0,
SmartPatch, and other
advanced features, including
an integrated debugger,
built-in Windows API call-
ing, and a script editor.

InstallMaster is for profes-
sional developers who want
complete control over their
installations. InstallMaster
includes Wise Installation
System 7.0 and advanced
features, including custom
dialog and graphics editing;
SetupCapture for repackag-
ing other installations into
Wise scripts; and
WebDeploy for efficient
installations from a Web
site or intranet.

Wise Solutions, Inc.
Price: InstallMaker, US$199;
InstallBuilder, US$399; InstallMaster,
US$799.
Phone: (800) 554-8565
Web Site: http://www.wisesolutions.com
Automagic Software
announced its suite of Y2K
Delphi Components. Using
these components, develop-
ers can ensure the explicit
entry of four digits to rep-
resent the year. The suite is
comprised of two data-
aware components
(TascY2KDBCombobox and
TascY2KDBEdit) and two
non-data-aware compo-
nents (TascY2KCombobox
and TascY2KEdit).

ActiveX versions of the
non-data-aware controls are
also provided on an as-is
basis. The Y2K suite of
components supports
Delphi 1, 3, and 4.

Automagic Software
Price: US$99
E-Mail: automagicsoftware@usa.net
WetStone Technologies,
Inc. announced
SMARTCrypt 1.2, an
ActiveX security control that
allows developers to build
applications that employ
SmartCards and crypto-
graphic tokens.
SMARTCrypt 1.2 abstracts
the RSA Public Key
Cryptographic Standard
(PKCS) #11.

SMARTCrypt provides
abstracted functionality for
file signing, file encrypting,
and key management. The
SMARTCrypt component
integrates with Delphi,
Microsoft Visual J++ and
Visual Basic, and other tools
that support ActiveX or
OCX controls.
SMARTCrypt is compatible
with Windows 95/98/NT.

WetStone Technologies, Inc.
Price: US$995 for single-user license;
US$2,995 for site license.
Phone: (607) 539-9981
Web Site: http://www.wetstonetech.com
Absolute Solutions Releases
ShortcutBar for Delphi 1.65

Absolute Solutions released
ShortcutBar for Delphi 1.65, a

full implementation of a
Microsoft Outlook bar for

Delphi. It features unlimited
groups, unlimited shortcuts per

group, scrolling groups and
shortcuts, reactive drag-and-

drop, small and large shortcuts,
and shortcut re-ordering.
ShortcutBar is available for

Delphi 3 and 4, and comes
complete with integrated help

and a sample application.
For more information, visit the

Absolute Solutions Web site at
http://dspace.dial.pipex.com/

absolutesolutions.

http://dspace.dial.pipex.com/absolutesolutions
http://dspace.dial.pipex.com/absolutesolutions
http://www.lingscape.com
http://www.wisesolutions.com
http://www.wetstonetech.com

4 February 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Sylvan Ascent Introduces SylvanMaps/OCX-3

toolsfactory Announces Class
Explorer for Inprise Tools

toolsfactory, a provider of
object-oriented class manage-

ment development tools,
announced ClassExplorer Pro
2.1, an integrated software

development tool that provides
object-oriented code navigation,
creation, and documentation for
Inprise’s Delphi and C++Builder

development environments.
ClassExplorer Pro 2.1 supports

features such as Class View and
Class Hierarchy, which simplify
the source view and class navi-

gation of complex projects. Class
member creation features simpli-
fy the creation of methods, prop-

erties, and fields to classes.
Code documentation features
offer completely customizable

automatic online help generation
from source code, including

indexes and hierarchical tables.
toolsfactory will be working in

cooperation with Inprise to pro-
vide integrated companion solu-

tions for Inprise development
tools. For more information, visit

the toolsfactory Web site at
http://www.toolsfactory.com.
Sylvan Ascent, Inc. released
SylvanMaps/OCX-3, the
company’s embedded map-
ping controls. This
release features a caching
system that increases
redrawing speed, support
for ADO, geo-referenced
raster images, on-the-fly
projection conversion,
and file translations.
There’s early testing sup-
port for OpenGIS, and
address geocoding has
been improved.
Black Diamond Offers Co

4Developers LLC Announ
Sylvan Ascent, Inc.
Price: From US$495 (Import/Export
ActiveX control only).
mponents for Delphi

ces COM Explorer 1.5
Phone: (800) 362-8971 or
(505) 986-8739
Web Site: http://www.sylvanmaps.com
Black Diamond Software,
Inc. introduced DataAware
and Special-Purpose compo-
nents for Delphi.

Three new DataAware
components (BDSIncSearch,
BDSTempTable, and
BDSTemplateStringList)
enable Delphi developers to
incrementally search a
DataSet; manipulate Sybase
or Microsoft SQL Server
temporary tables; and create
text from a template that is
filled in, either programmat-
ically or from a database
query similar to a word
processor mail-merge.

Three Special-Purpose
components
(VersionResource, EventLog,
and CollectionExpert)
enable Delphi applications
to read and write messages
to the Windows NT Event
Log; extract information
from the version resource of
an application or dynamic
library; and visually create
collections for use in their
applications.

Black Diamond Software, Inc.
Price: DataAware Bundle, US$179, or
US$269 with source; Special-Purpose
Bundle, US$169, or US$259 with source;
components are also available separately.
Phone: (203) 431-9600
Web Site: http://www.bds.com
4Developers LLC
launched COM Explorer
1.5, a tool designed to help
developers and system
administrators explore,
manage, and repair COM
files using an Explorer-like
user interface.

COM Explorer’s interface
enables users to view, man-
age, and repair ActiveX
Controls, DLL Servers, and
EXE Servers. The software
provides a centralized view
of COM objects, as well as
detailed information, such
as GUID, TypeLib, version,
and file information.

An inventory report
generator allows devel-
opers to generate HTML
or comma-delimited text
reports that include a list
of the COM objects
installed. The report
generator supports
strong filtering and cus-
tomization options.

4Developers LLC
Price: Single license, US$129;
site license, US$350; corporate
license, US$650.
Phone: (877) 353-7297
Web Site: http://www.
4developers.com

http://www.toolsfactory.com
http://www.sylvanmaps.com
http://www.bds.com
http://www.4developers.com
http://www.4developers.com

5 February 1999 Delphi Informant

News
L I N E

February 1999

JBuilder 2 Wins Two Awards

Inprise Announces Brazilian Subsidiary
New York, NY — Inprise
Corp. announced that
JBuilder 2, its family of visu-
al development tools for cre-
ating Java business and data-
base applications for the
enterprise, has won two
awards at Java Business Expo:
the Editors’ Choice Award
from the Java Developer’s
Journal for Best Java
Development Environment,
and the Editors’ Choice
Award from JavaWorld maga-
zine for Best Integrated
Development Environment.
In addition, Inprise’s
Inprise Offers to License

InterBase Releases Inter
VisiBroker for Java was
named a finalist in the best
General Class Library catego-
ry in the JavaWorld Editors’
JBuilder to Microsoft

Inprise to Acquire Apoge

Base 5.5
Choice Awards. The awards
were given out at the Java
Business Expo trade show in
New York City.
Sao Paulo, Brazil — Inprise
Corp. announced it had
signed a letter of intent to
acquire Engine Informatica
Ltda., its Sao Paulo, Brazil-
based partner and distributor.
Pending final contract resolu-
tion, Engine Informatica will
become a wholly owned
Inprise subsidiary, called
Inprise do Brasil, Ltda.
José Rubens M. Tocci, direc-
tor of Engine Informatica, will
head the Brazilian subsidiary
as Country Manager. He will
report directly to Kurt A.
Heck, Inprise’s general manag-
er of Latin America. Inprise do
Brasil’s primary focus will be
to deliver solutions-oriented
sales and services to the enter-
prise market, as well as provide
local support for the retail sales
channel. It will immediately
assume responsibility for all
existing partner relationships
in Brazil, leveraging the key
relationships that Inprise
maintains with Visionnaire
(VisiBroker product line), and
retail partners PARS and
IngramMicro.
e Information Systems
Tokyo, Japan — Inprise
Corp. announced an offer to
license its JBuilder Java devel-
opment tools to Microsoft
Corp. This offer is in response
to a U.S. district court’s
injunction against Microsoft
requiring the company to con-
form to Sun Microsystems’
Pure Java specification.

Inprise has worked closely
as a partner to Sun and
Microsoft. Inprise helped
Sun develop the JavaBeans
specification, and was first
to ship a development envi-
ronment with support for
100% Pure Java and JDK
1.1 with the initial release
of JBuilder 1.0.

The JBuilder product fami-
ly supports Sun’s Pure Java
specifications, including Java
Native Interface, RMI, Java
event handling, JDK 1.1.x,
JDK 1.2, JFC/Swing compo-
nents, JavaBeans, Enterprise
JavaBeans, and JDBC, many
of which may be issues in
developing and deploying
platform-independent Java
solutions with Microsoft’s
Visual J++.
Scotts Valley, CA — Inprise
Corp. announced it has
acquired Apogee
Information Systems, Inc., a
privately held enterprise sys-
tems integration and con-
sulting firm based in
Marlboro, MA. As a result,
Apogee will become part of
Inprise’s Professional Services
organization.
Using multi-tier information

systems, the 22-person compa-
ny assists global clients with the
integration of data and busi-
ness processes. Apogee clients
include Beloit Corporation,
Dun & Bradstreet, Sheraton
Hotels, Bay Networks (Nortel),
and the Massachusetts
Department of Revenue.
Designed to assist corporate

customers and systems-integra-
tion partners develop and
implement enterprise solutions,
Inprise Professional Services
integrates the company’s con-
sulting, training, and technical
support expertise into a single,
world-wide organization.
Scotts Valley, CA —
InterBase Software Corp.
announced InterBase 5.5, a
new version of the compa-
ny’s embedded database.

InterBase 5.5 includes
InterClient 1.5, a high-speed
JDBC driver that connects
Java applications and applets
to InterBase databases, and
adds direct international
support for user-specified
character sets.

Stability in InterBase 5.5
has been improved by adding
such features as protection
for online metadata updates
of Triggers and Stored
Procedures by the InterBase
5.5 versioning engine. User
Defined Functions (UDFs)
have added safety features in
Windows, and the UDF
library has been expanded.
Performance enhancements
include more efficient mem-
ory usage and a multi-thread-
ed ODBC 3.0 driver.

For pricing and other infor-
mation, call (888) 345-2015
or (831) 431-6500, or visit
the InterBase Web site at
http://www.interbase.com.
DPR Launches New
Delphi Courses

Database Programmers Retreat
(DPR) announced two new cours-
es aimed at experienced Delphi

developers: Web Application
Development with Delphi and

Delphi 4 Multi-tier Development
with MIDAS. The courses will be
held at monthly intervals at the
company’s training center in

Gloucestershire.
Web Application Development
with Delphi covers the design,

coding, and implementation of a
Web-enabled application using

HTML, client-side Java scripts, and
CGI. This is a five-day course and

costs US$1,995 per delegate.
Delphi 4 Multi-tier Development

with MIDAS focuses on the issues
involved in creating multi-tier data-
base applications. Participants will
learn how to create a complete

multi-tier application from scratch,
and how to convert an existing

database application to multi-tier.
This is a three-day course and
costs US$1,295 per delegate.

For more information, call
(800) 279-9717 or

+44 (0) 1452 814 303, or visit
the DPR Web site at

http://www.dp-retreat.com.

http://www.dp-retreat.com
http://www.interbase.com.

6 February 1999 Delphi Informant

On the Cover
Data Retrieval / Queries / TDataSet

By Cary Jensen, Ph.D.

Figure 1: The SEQUENCE proje
Searching for Records
Delphi Database Development: Part VI

In last month’s “DBNavigator,” you learned how to use DataSets and TField
objects to navigate and edit data. The series continues this month with a look

at record-searching techniques. Record searching refers to the process of quick-
ly locating a record based on data stored in that record, e.g. searching for a
particular record in a customer account table based on an account number, or
finding an invoice based on the date of purchase.
There are three general approaches to record
searching, which are demonstrated in the fol-
lowing sections:

sequential searches
TDataSet search methods
parameterized SQL SELECT queries

Sequential Record Searches
The first, and often least desirable, searching
technique is sequential searching. Sequential
searches are performed by scanning a DataSet,
record by record, testing each record for a
value or values. Sequential searches can’t make
use of indexes to improve the speed with
which a given record is found, and average
ct demonstrates a sequential search.
search times increase in direct proportion to
the number of records in your DataSet.

The use of a sequential search on the
CUSTNO field of the CUSTOMER.DB
table is demonstrated in the example
SEQUENCE project (all example projects
for this article are available for download;
see end of article for details). The main
form for this project is shown in Figure 1.

The code shown in Figure 2 is attached to the
Find button on this project’s main form. There
is a technique used in this code worth men-
tioning. Specifically, a TField variable is
declared, and it’s assigned to the TField object
returned by the FieldByName method. This
variable is then used throughout the event
handler to reference the LastName field in the
table. As you learned in last month’s
“DBNavigator,” the use of FieldByName intro-
duces a slight performance penalty compared
with the direct access achieved through the use
of the Fields property. However, by using a
variable to hold the TField returned by
FieldByName, the overhead of FieldByName is
incurred only once, while maintaining the
code readability afforded by FieldByName.

Normally, sequential searches are only used
with local tables, including Paradox and
dBASE tables. When a remote database is
involved, sequential searches are typically

procedure TForm1.Button1Click(Sender: TObject);

var
SearchField: TField;

begin
SearchField := Table1.FieldByName('LastName');

Table1.DisableControls;

try
Table1.First;

while not Table1.EOF do begin
if SearchField.Value = Edit1.Text then begin
StatusBar1.SimpleText :=

'Located Employee ' + Edit1.Text;

Exit;

end;
Table1.Next;

end;
StatusBar1.SimpleText := 'Could not find '+Edit1.Text;

finally
Table1.EnableControls;

end;

Figure 2: Code associated with the Find button on the
SEQUENCE project main form.

On the Cover

Figure 3: The example LOCATE project.
only performed if the table being searched is very small.
Performing sequential searches on remote tables requires that
every search record be retrieved from the server. When the
remote table is large, a sequential search can have a large neg-
ative impact on application performance and network traffic.

TDataSet Record-searching Methods
It’s usually better to use a searching method instead of
sequential searches, except when your table is very small.
There are two primary searching methods: FindKey and
Locate. FindKey is available for Table components, and Locate
is available for all DataSets.

The primary advantage of searching methods is that they can
use a table’s index to perform nearly instantaneous searches.
Unlike sequential searches, where the time it takes to perform
a search is directly proportional to the number of records in
the table, search methods are largely unaffected by table size.

The most flexible of the searching methods is Locate. Locate
permits you to search on one or more fields, and to choose
7 February 1999 Delphi Informant
whether the search will be case-sensitive, as well as whether to
perform a partial match on the last search field. Locate has
the following syntax:

function Locate(const SearchFields: string;
const SearchValues: Variant; Options: TLocateOptions):
Boolean;

Locate requires three parameters. The first is a string that lists
the field or fields being searched. If the search is being per-
formed on more than one field, the field names are separated
with semicolons.

The second parameter is a variant containing the value or
values for which to search. If the first parameter specifies a
single field, this second parameter can be either a variant or
any valid expression type (variable, constant, literal, etc.). If
more than one field is listed in the first parameter, this sec-

ond parameter must be a variant array.

The third parameter is a set that includes zero, one,
or both of the following flags: loPartialKey and
loCaseInsensitive.

When you invoke Locate, it first checks for an
index that includes the field or fields you listed
in the first parameter. If one is found, Locate
uses that index; otherwise it performs a sequen-
tial search. If a single field is being searched,
Locate attempts to find the first record (the order
being based on the identified index order) that
contains the data specified in the second para-
meter within the field named in the first para-
meter. If more than one field is listed, Locate
attempts to find the record where the first
named field contains the value specified in the
first element of the variant array, the second

named field contains the value in the second element of
the variant array, and so on.

If the third parameter includes the loCaseInsensitive flag, the
comparison of string fields is case-insensitive. When the flag
loPartialKey is included in the third parameter, the last field
in the field list must be a string field, and is considered a
match if the search field contains data that begins with the
same characters specified in the corresponding search value.

If a matching record is found, Locate repositions the cursor to
the located record and returns a value of True. If no match is
found, the cursor doesn’t move, and Locate returns False. The
LOCATE project demonstrates the use of the Locate method
(see Figure 3). The code in Figure 4 is associated with the
OnClick event handler of the Find button.

While Locate is the easiest searching method to use, it’s
only available in 32-bit versions of Delphi. If you need to
create 16-bit applications, you must rely on FindKey.
FindKey is only available for Table components, and it

On the Cover
only operates on the current index. FindKey has the fol-
lowing syntax:

function FindKey(const SearchValues: array of const):
Boolean;

The FindKey method requires a single parameter consisting
of an array of values to search. The first element in the array
is compared with data in the first field of the current index,
the second element of the array is compared with the second
field of the index, and so on. Similar to Locate, if a match is
found, the cursor is moved to the matching record, and the
value True is returned. When no match is found, the cursor
doesn’t move, and FindKey returns False.

Another method similar to FindKey is FindNearest. This
method, which also takes an array of search values as its sole
parameter, moves the cursor to the record that best matches
the search array. Unlike FindKey, FindNearest always finds a
match, and, therefore, always moves the cursor.
8 February 1999 Delphi Informant

procedure TForm1.Button1Click(Sender: TObject);

var
SearchList: Variant;

SearchOptions: TLocateOptions;

begin
SearchList := VarArrayCreate([0,1],VarVariant);

SearchList[0] := Edit1.Text;

SearchList[1] := Edit2.Text;

SearchOptions := [];

if CaseInsensitiveCheckBox.Checked then
SearchOptions := SearchOptions + [loCaseInsensitive];

if PartialKeyCheckBox.Checked then
SearchOptions := SearchOptions + [loPartialKey];

if Table1.Locate('COUNTRY;CITY',

SearchList, SearchOptions) then
StatusBar1.SimpleText := 'Match found'

else
StatusBar1.SimpleText := 'No match found';

end;

Figure 4: The OnClick event handler of the Find button on the
LOCATE project.

Figure 5: The PARAMQRY project demonstrates the use of a pa
Searching with Parameterized Queries
The third search technique involves the use of parameter-
ized queries. A parameterized query is one that includes
one or more variables, referred to as parameters, in a SQL
SELECT statement’s WHERE clause. By changing the
value of one or more parameters, you change which
records are affected by the query. For example, consider
the following SELECT statement:

SELECT * FROM CUSTOMER

WHERE (COUNTRY = :CTRY AND CITY = :CITYNAME)

The two parameters in this query are CTRY and CITYNAME.
Note that these parameters are identified in the SQL state-
ment by preceding their parameter names with a colon.
Assuming the preceding SQL statement is assigned to the
SQL property of a query named Query1, the following
statements assign values to the two parameters, and then
execute the query:

Query1.Close;

Query1.ParamByName('CTRY').Value := Edit1.Text;

Query1.ParamByName('CITYNAME').Value := Edit2.Text;

Query1.Open;

If you read the second installment in this series (“Delphi
Database Development Part II: Tables, Queries, and Stored
Procedures” in the October, 1998 issue of Delphi
Informant), you may recall that parameterized queries need
to be prepared only once before being executed the first
time. Subsequent executions of parameterized queries that
have been explicitly prepared are much faster. You may
also recall that if you fail to explicitly prepare a query,
Delphi will prepare it for you, but will also unprepare the
query when it’s closed. As a result, whenever you use para-
meterized queries, it’s essential that you explicitly prepare
them before their first execution, and unprepare them once
they’re no longer needed.

The use of a parameterized query is
demonstrated in the project named
PARAMQRY, shown in Figure 5. The
query used in this project is explicitly
prepared before its first execution. This
task is performed with the following
code, which appears on the query’s
BeforeOpen event handler:

if not Query1.Prepared then
Query1.Prepare;

and it’s explicitly unprepared with the fol-
lowing code from the form’s OnClose event
handler:

Query1.Close;

if Query1.Prepared then
Query1.UnPrepare;rameterized query.

On the Cover

Figure 6: The COMPARE project tests relative performance of search tec

Figure 7: The results from a table of more than 100,000 records.
You’ll notice from Figure 5 that the SELECT statement
returns only the record or records that satisfy the WHERE
clause. This effect is different from what is produced by the
search methods Locate and FindKey, which change the cursor
position in the database. It’s important to keep this differ-
ence in mind when choosing one technique over the other.

Searching Performance
The three searching techniques described here each use a
different mechanism to select a record. They also differ in
performance. This begs the question: Which technique
results in the best performance?

Logic would suggest that sequential searches will be the
slowest, parameterized queries the fastest, and the search-
ing methods somewhere in between. But what is logical
isn’t always correct. It’s been my experience that if you’re
really concerned about performance, you need to do some
direct comparisons and determine empirically which of
your options is best. That’s just what I did with these
search techniques.
9 February 1999 Delphi Informant
The COMPARE project provides you with a means
of testing the relative performance of sequential
searches, FindKey, Locate, and parameterized queries
(see Figure 6). After selecting an alias and a table,
clicking the Load Search Array button causes the appli-
cation to load an array with 10 values selected at ran-
dom from the first field of the specified table, and to
construct a parameterized SQL SELECT statement.
Clicking one of the other buttons performs the speci-
fied search repeatedly on the first field of the selected
table, using the values in the array (again, chosen at
random) as the value being searched for. After the
search has been performed the specified number of
repetitions, the number of milliseconds required for
the test is displayed above the corresponding button.

I ran this example many times on a wide range of
tables and databases, and the images in Figures 6 and 7
are representative of what I observed. Figure 6 shows
the results from the 15-record CUSTOMER table
from the InterBase EMPLOYEE.GDB database that
ships with Delphi. With this small table, the sequential
search was significantly faster than any other tech-
nique, taking about one millisecond on average to
locate a given record. The query was the slowest.

Figure 7 displays the results from a table of more than
100,000 records (it was generated by duplicating the
CUSTOMER table records over 6,700 times, gener-
ating unique customer numbers for each record).
With the large table, the sequential search was disas-
trous, taking more than one hour to perform the 100
searches. Both FindKey and Locate required approxi-
mately 700 milliseconds to perform the 100 searches.
Interestingly, the parameterized query was nearly 30
percent slower than the search methods, requiring just
over one second to perform the 100 searches.

Conclusion
Sequential searches are the fastest technique when working with
a small number of records, but are quickly becoming a poor
choice as the size of the table increases. FindKey and Locate, by
comparison, are relatively unaffected by table size, providing for
consistently fast performance. Ironically, parameterized queries
were always slower than the search methods, but still fast and
largely uninfluenced by the number of records in the table. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\FEB\DI9902CJ.

hniques.

Cary Jensen is president of Jensen Data Systems, Inc., a Houston-based database
development company. He is co-author of 17 books, including Oracle JDeveloper
[Oracle Press, 1998], JBuilder Essentials [Osborne/McGraw-Hill, 1998], and
Delphi in Depth [Osborne/McGraw-Hill, 1996]. He is a Contributing Editor of
Delphi Informant, and is an internationally-respected trainer of Delphi and Java.
For information about Jensen Data Systems consulting or training services, visit
http://idt.net/~jdsi or e-mail Cary at cjensen@compuserve.com.

http://idt.net/~jdsi

10 February 1999 Delphi Informant

Informant Spotlight
MTS / Security / Delphi 4

By Paul M. Fairhurst
MTS Development
Part III: Security, DCOM, and More

I f you’ve been following this series on Microsoft Transaction Server (MTS),
you’ll know that we’ve built a simple three-tier application to provide online

banking to customers of The Delphi Bank, a fictitious bank. We used a Paradox
database for the back-end, a set of middle-tier MTS components supporting our
business framework, and a standard Delphi application for the user interface.
So far, we’ve used only a user ID and password to provide user access to the
application and business services. MTS offers a much more sophisticated envi-
ronment for security than this, upon which we can capitalize.
In this third and final part of this series,
we’re going to look at the more advanced
aspects of MTS. The first thing we’ll do is
implement better security. The other limi-
tation has been that the client application
must be run on the same machine as the
server components. We’ll fix this by allow-
ing the client to run remotely over a
DCOM connection. Finally, we’ll discuss
client-side transactions, callbacks, refer-
ences, and activities.

The Client Key
In Part II, we developed a client application
that accessed four objects (Customers, Accounts,
AccountTypes, and Transactions) in our
DelphiBankServer2 component. Almost every
method had a ClientKey parameter obtained
from the Logon method of the Customers object.
This key is meant to provide timed-out access
to the server objects. If the client application
doesn’t access one of our MTS objects for a cer-
tain amount of time after logon, the client key
is invalidated. Without a valid client key, meth-
ods in the objects won’t proceed, and activity is
disallowed. This is a simple, but effective, form
of security that wasn’t fully implemented in
Part II, so let’s see how it’s done.

As I’ve already mentioned, client keys are cre-
ated by the Logon method of the Customers
object. Remember that each of the four
objects (Customers, Accounts, AccountTypes,
and Transactions) has its own copy of a data
module descended from a common data
module named TDmDelphiBankCommon.
The methods to create and validate a client
key are located here. The Logon method calls
CreateClientKey, which allocates a new key
and associates the current system time with
it. All the other objects’ methods make a call
to IsClientKeyValid — with the client key
that the client passed in — before they per-
form any actions. In this method, the current
system time is checked against the known
client keys and their times. For the client key
to be valid, it has to be known, and the dif-
ference of the current system time and the
client-key time can’t be more than a preset
amount (five minutes by default).

This is all straightforward, but where do we
store a list of client keys in a bunch of state-
less MTS objects? We could store them in the
database, but let’s think about the problem a
little. We could be dealing with hundreds of
calls a minute to the IsClientKeyValid
method, because it’s called at the start of
nearly all methods in all objects. We also
need to consider the amount of database
access on a potentially very active table that
would store these values. A table like this
would be a hot spot of activity, and present a
bottleneck as the components scale upward.
MTS provides the solution to this problem:
the MTS Shared Property Manager (SPM).

Informant Spotlight

function TdmDelphiBankCommon.IsClientKeyValid(

ClientKey: Integer; var strDebug: WideString): Boolean;

var
spgClientKeys : ISharedPropertyGroup;

spClientKey : ISharedProperty;

nTickCountNow : Integer;

begin
Result := False;

strDebug :=

'Connection has timed out. Please logon again.';

try
{ Create property group. }
spgClientKeys :=

CreateSharedPropertyGroup(cDelphiBankClientKeys);

if not Assigned(spgClientKeys) then
raise Exception.Create(

'Could not create client key property group');

{ Look for the property. }
spClientKey := spgClientKeys.PropertyByName[

'CK' + IntToStr(ClientKey)];

if not Assigned(spClientKey) then
Exit;

{ Check value. }
nTickCountNow := GetTickCount;

if (Abs(nTickCountNow) - Abs(spClientKey.Value)) <=

(cClientKeyTimeout * 1000) then
begin
Result := True;

strDebug := '';

end;
except
on E: Exception do begin
strDebug := 'TdmDelphiBankCommon.IsClientKeyValid() -

Client Key of "' + 'CK' + IntToStr(ClientKey) +

'" -> ' + E.Message;

raise Exception.Create(strDebug);

end;
end;

end;

Figure 2: The IsClientKeyValid method.

function TdmDelphiBankCommon.CreateClientKey: Integer;

var
spgClientKeys : ISharedPropertyGroup;

spClientKey : ISharedProperty;

wsPropertyName : WideString;

bAlreadyExists : WordBool;

begin
try
{ Create property group. }
spgClientKeys :=

CreateSharedPropertyGroup(cDelphiBankClientKeys);

if not Assigned(spgClientKeys) then
raise Exception.Create(

'Could not create client key property group');

{ Create the property. }
bAlreadyExists := False;

while not bAlreadyExists do begin
Result := GetTickCount;

wsPropertyName := 'CK' + IntToStr(Result);

spClientKey := spgClientKeys.CreateProperty(

wsPropertyName, bAlreadyExists);

end;

if not Assigned(spClientKey) then
raise Exception.Create(

'Could not create client key');

{ Set the value. }
spClientKey.Value := Result;

except
on E: Exception do
raise Exception.Create(

'TdmDelphiBankCommon.CreateClientKey() - ' +

E.Message);

end;
end;

Figure 1: The CreateClientKey method in action.
Sharing State
The SPM is a resource dispenser you can use to share state
among multiple objects within a server process. This means
that any objects in the same package can share state with
each other. This is incredibly useful for stateless objects. The
SPM provides shared property groups, which establish
unique name spaces for the shared properties they contain.
You categorize the properties you want to store into groups,
then store properties in the groups as name/value associa-
tions. Concurrency is taken care of because the SPM also
implements locks and semaphores to protect your properties
from simultaneous access (which could result in lost
updates, and could leave the properties in an unknown
state). Shared properties are held in memory and, therefore,
have a very fast access time. The downside is that they dis-
appear when MTS is shut down and restarted, so don’t rely
on them for persistent data storage; they’re geared toward
providing run-time shared state only.

The Mtx module of Delphi provides the definition of, and
access to, the SPM interfaces. The top level in the hierar-
chy is the ISharedPropertyGroupManager interface, which
allows you to create and find property groups. Once you
have a group, you access it with the ISharedPropertyGroup
interface. This allows you to create and find properties in
the group. Finally, a property itself is accessed with the
ISharedProperty interface, which you use to set or get its
11 February 1999 Delphi Informant
variant value. Delphi provides two ways into the SPM: the
CreateSharedPropertyGroup function, which creates a group
with a specified name and default features; or, for maxi-
mum control, the CreateSharedPropertyGroupManager
method, which returns an ISharedPropertyGroupManager
interface you can use to create a group with extra features.
We’ll use the former to create a group where we can store
our client keys.

Figure 1 shows the CreateClientKey method in action (all
source discussed in this article is available for download;
see end of article for details). The first line creates the
shared property group with the name of the constant
cDelphiBankClientKeys (DelphiBankServer3ClientKeys). If
the group already exists (which it will most of the time),
then an interface is returned on the existing group; other-
wise, a new group will be created and an interface returned
on that. We then generate a unique client key with the
help of the Win32 function GetTickCount, which returns
the number of milliseconds since the system started. Once
we have our shared property, we set its value to the current
tick count and exit. Not hard at all, is it?

Figure 2 shows the IsClientKeyValid method, which is called
to check if the client key passed in by a client is still opera-
tional. You can see that it starts by creating the same prop-

if (TrnAmount > 2000) or (TrnAmount < 2000) then
begin

if not (IsSecurityEnabled and
IsCallerInRole('Managers')) then

raise Exception.Create('Transactions of more than ' +

'2000 dollars only allowed by Managers');

end;

Figure 3: An example of enforcing business rules.

Informant Spotlight
erty group as before, but then it looks for the shared proper-
ty in the group by name. If it finds it, it checks the value
against the current system tick count and the timeout limit,
returning appropriately.

Shared properties can be used for many things: They could
help store singleton values; they could be used to hold the
current location and status of players in an online multi-
player game; and they could even be used to provide the
next sequential number for a serial key in a database to
save the delay of looking it up. The important thing is to
recognize their importance in MTS, and use them when
you can. They can literally save you a lot of time.

Role-based Security
Every organization has specific duties assigned to its
employees. For a small company, this is easy to monitor.
As the organization grows, it’s forced to segregate its work-
force into more general categories, such as Payroll, Sales,
and Development, to abstract and categorize itself and its
staff. The underlying IT technology it uses tends to mimic
this structure for similar reasons. With the Windows NT
operating system, domains are used to create areas of users,
such as Payroll, that share resources. By doing this, the sys-
tems administrators can more efficiently perform their
jobs, making network security easier to enforce. A set of
MTS business objects may have the requirement to be
used by one or more domains, or none. MTS security
hooks into the Windows NT domain security model, but
domains can contain users that have a broad spectrum of
duties to perform. We need something more fine-grained
with which to pigeon-hole our users and make decisions at
run time about what functionality we allow them to per-
form. The MTS solution to this is to further categorize
users with roles.

A role is a symbolic name that defines a logical group of
users for a package of components. Roles are defined dur-
ing application development, and Windows NT users or
groups are given the necessary roles at deployment time.
There are two ways of using role-based security:
Declarative and Programmatic. Declarative security is
designed to instruct MTS to block access to packages,
components, and interfaces. If you design your compo-
nents well, and split functionality into related groups, then
you will be able to take advantage of declarative security
more effectively. We’ll see how to implement declarative
security when we look at the MTS Explorer shortly. On
the other hand, programmatic security requires program-
ming to implement, but offers a totally flexible way for
you to make run-time decisions inside your objects.

Programmatic Security
At run time, objects can check if a user is assigned to a spe-
cific role. By doing so, actions can be blocked, and are
therefore used to enforce business rules. In The Delphi
Bank example, we could have roles of Customers, Tellers,
and Managers. Customers would represent typical cus-
12 February 1999 Delphi Informant
tomers. We don’t want to allow customers to add new bank
accounts or delete transactions, for instance, so we have to
write code to prevent this. Tellers work in the bank, but
aren’t Managers. Adding accounts or account types is
acceptable for Tellers, but authorizing a transfer of more
than $2,000 is only allowed by Managers.

Figure 3 shows the sort of code you would use to imple-
ment this. In our example, this code would be added to the
TAccounts2.AddToBalance method, an internal method
called by other methods in this object, such as Transfer. You
can see what it does quite easily. If the amount to add or
deduct from the balance is more than $2,000, and security
is not enabled, or the caller isn’t a Manager, the call fails.
The IsSecurityEnabled method normally returns True, but
returns False if the MTS package is running in the client’s
process space, and not in an MTS process space (more on
this shortly).

The definition of the caller used in IsCallerInRole varies
depending on the complexity of your setup. It’s defined as the
process calling into the current server process in which the
object is executing, and is normally the base client. However,
if an MTS object calls another MTS object on a separate
machine, or in another package (each package runs in a dif-
ferent process), it won’t be the base client. Rather, the caller
will be the ID of the calling MTS process running the calling
object. This can be a tricky subject, and more information is
available in the MTS online documentation, but I’ll try to
give you a brief overview.

Each package runs under the guise of a user account, as we
shall see shortly. Any objects in that package run in the
same process, and take on the identity of the package’s user
account. If these objects access resources, such as a data-
base, then they would do so with the rights and privileges
of the package’s user account, and not of the base client
(the user), as you might expect. Also, security credentials
are only checked when you cross a process space, so an
object calling another object in the same package doesn’t
have its security checked. MTS security is a complex topic,
and you need to read up on this in more detail if you plan
on developing a system using MTS.

The MTS Explorer
The MTS Explorer lets you install and configure — locally
or remotely — packages, components, security, and other
aspects of MTS running on a computer. We’ll start by
implementing declarative security on our objects. With

Informant Spotlight
declarative security, you can control access to packages,
components, and interfaces by assigning roles to them with
the MTS Explorer. Because declarative security uses
Windows NT accounts for authentication, you won’t be
able to use declarative security for a package if MTS is run-
ning on Windows 95.

When you first install MTS, there is no security on the
System package, because no users have been mapped to the
Administrator role. Therefore, security on the System pack-
age is disabled, and any user can use the MTS Explorer to
modify package configuration on the computer. If you map
users to the System package’s roles, MTS will check roles
13 February 1999 Delphi Informant

Figure 4: Adding users and groups to a role.

Figure 5: The System package with roles defined.
when a user attempts to modify packages in the MTS
Explorer. By default, the System package has an
Administrator role and a Reader role. Users mapped to the
Administrator role of the System package can use any MTS
Explorer function. Users that are mapped to the Reader role
can view all objects in the MTS Explorer hierarchy, but
can’t install, create, change, or delete objects, shut down
server processes, or export packages.

In the MTS Explorer, you’ll see the System package under My

Computer | Packages. If you open this, you’ll see Components

and Roles. Open Roles and you’ll see the Administrator and
Reader roles as discussed. Add your account and any other
accounts that will be allowed to administrate MTS to the
Administrator role before enabling security on the System
package. Do this now by opening Administrator. Right-click on
Users and select New | User. You’ll see a dialog box like that
shown in Figure 4. You can now add your groups and users
(which can be from other domains) and select OK. On my sys-
tem, the System package now looks like that shown in Figure 5.

You can clearly see the groups and users assigned to each role.
Once you’ve done this, right-click on the System package and
select Properties. From the Properties dialog box, select the
Security page, and select Enable authorization checking. It’s
important that you only do this after you’ve added your
account to the Administrator role; otherwise, you’ll no longer
be able to administer MTS, and you will be forced to rein-
stall. If you now shut down all server processes (by right-
clicking on My Computer and selecting Shut Down Server

Processes), System security will be enabled.

Declarative Security
So much for the System package, but we also want declara-
tive security on The Delphi Bank package and its objects.

To facilitate this, move administration-related
methods from the four main interfaces
(IAccountTypes3, IAccounts2, ICustomers2, and
ITransactions2) into an IxxxAdmin interface. For
instance, move the Delete and ListAll from
ITransactions2 to ITransactionsAdmin, because
these functions should only be used by Tellers and
Managers, not Customers. This means we can
assign the IxxxAdmin interface to the Tellers’ and
Managers’ roles. Any user not in one of these roles
trying to access one of the IxxxAdmin interfaces
will be automatically blocked out by MTS. The
original four interfaces will have all roles mapped
to them, and thus be accessible by all users.

Open The Delphi Bank package, then the Roles

directory. You should see that no roles are
defined. Right-click on Roles and select New, then
Role. Type in the name of the role and press OK.
Do this three times, entering Managers, Tellers,
and Customers, respectively. You need to add
users and groups to the roles in the same way you
did for the System package. It’s important to

Informant Spotlight
understand that these are Windows NT users and not the
customers we’ve defined on The Delphi Bank database. You
must add the customers you intend to use to Windows NT,
as well as The Delphi Bank database Customers table.

Note that whichever user account you use to log on to
Windows with when you run the client application will
be the one used by MTS to authorize access to the
objects. You could log on to the application as three
different users, and transfer money and pay bills on their
accounts, but MTS will use your Windows logon user
name to validate access to the objects and interfaces
because that is what is transported by DCOM. To make
this work for you then, add your Windows logon user
name to the Customers table, and give yourself at least one
bank account in the Accounts table. You could use Paradox
to accomplish this. Then, for each role you just added,
open it, right-click on Users, select New, then User, and
add your logon user name.

All that remains is to assign the roles to our components
and their interfaces. Open the Components folder, and note
the four components in our package. Each of them has two
interfaces: a main one and an admin one. Figure 6 shows
the setup for the Accounts2 object. Notice that for the
IAccounts2 interface I’ve added all three roles because
everyone can access this interface. For the IAccountsAdmin
interface, I added only the Managers and Tellers roles. For
the object itself, Accounts2, I added all three roles because
we want all users to be able to access the component. You
14 February 1999 Delphi Informant

Figure 6: The Delphi Bank package with roles and users defined.
need to do the above for the remaining three objects and
each of their two interfaces. When you have done this,
enable authorization checking for the package in the same
way you did for the System package. Declarative security is
now fully enabled for The Delphi Bank.

Packaging Properties
Before discussing remote access with DCOM, let’s quickly go
through the property sheets for a package. When you look at
this dialog box for The Delphi Bank package, you’ll see that
there are five information tabs from which to choose.

The General page contains the name and description of the
package. The Security page allows you to enable authoriza-
tion checking, and set the authentication level (usually set to
packet). The Advanced page is interesting. Here you can
specify what happens once all components in the package
have been deactivated. Depending on the expected level of
use of the package, you may want to leave it running, or
shut it down after a number of minutes to conserve
resources. The default is to shut down after three minutes. If
you’re currently developing the components in the package,
it’s a good idea to set the package to shut down after zero
minutes, because this frees up the lock on the DLL to which
you want to compile. Also on this page is the ability to dis-
able deletions and changes to the package. This can be used
to avoid accidental changes on a live system. These flags
would have to be manually turned off by an administrator
before the package could be deleted or changed.

The Identity page allows you to specify the Windows user
account that components in the package will use. If the
components need to access resources, such as a database or
MTS components on another machine, maybe even to read
and write files to a server somewhere, then this is the
account they will use to do it. Finally, the Activation page
specifies how the components in the package are activated.
The choices are Library package and Server package. A
Library package runs in the process of the client that cre-
ates it. This option is only available for clients on the com-
puter on which the package is being installed and config-
ured. A Server package runs in its own process on the com-
puter. Server packages support role-based security. Library
packages have no security; all of its components are avail-
able to the client. The BDE-MTS package installed by
Delphi 4 is an example of such a package.

Remote Clients via DCOM
You may be wondering by now how clients from across the
network call MTS components? How does a client application
know where to find them, and what extra work do we have to
do to the client to make it run across a network? Thanks to
DCOM and an MTS wizard, the answer is “very little.”

DCOM is an extension to COM that allows calls to COM
objects to take place transparently over a network.
Transparent means that the client application is blissfully
unaware of whether the COM objects are running on the

Informant Spotlight

procedure MakeOrder(CustomerId, StockId: Integer;

StockAmount: Currency);

var
TransactionContextEx : ITransactionContextEx;

InventoryIntf : IInventory;

PaymentIntf : IPayment;

begin
TransactionContextEx := CreateTransactionContextEx;

try
OleCheck(TransactionContextEx.CreateInstance(

CLASS_Inventory, IInventory, InventoryIntf));

OleCheck(TransactionContextEx.CreateInstance(

CLASS_Payment, IPayment, PaymentIntf));

InventoryIntf.RemoveStock(StockId, StockAmount);

PaymentIntf.CreateStockPayment(

CustomerId, StockId, StockAmount);

except
TransactionContextEx.Abort;

raise;
end;

TransactionContextEx.Commit;

end;

Figure 7: Client transactions are accomplished with the
ITransactionContextEx interface.
local machine, or halfway around the world. By using stan-
dard OLE-compatible parameters, a method call is auto-
matically packaged and routed over a network to the server
machine, where it’s then un-packaged and executed.
DCOM is already installed on Windows NT 4.0, but on a
Windows 95 system, you’ll have to download and install
DCOM for Windows 95 (from the Microsoft Web site)
before you can call the MTS components across a network.

Assuming you’ve installed DCOM, there’s a quick way to
enable a client computer to run our application and use
objects on our server. If you right-click on The Delphi Bank

package and select Export, you’ll be presented with a dialog
box asking for the name and location of the exported
package. Three things are exported:
1) the DLL containing your components,
2) a .PAK file that can be used to import the package and

component(s) into another MTS server installation, and
3) a client sub-directory containing an executable that you

run on a client computer. This executable performs all
the necessary registry entries to register the COM objects
for the client application to use, but with additional
information about their location on the network.

The client we’ve been developing can now be run on this
computer with no changes. It will instantiate and use the ser-
vices of the objects without realizing they’re running on your
server. You can examine what has been registered and adjust
your DCOM settings by running the DCOM Configuration
Manager (dcomcnfg.exe). See the “References” section at the
end of this article for books pertaining to DCOM and other
subjects relevant to MTS.

Client-side Transactions
It’s often necessary — or easier — for the client application
to control transactions. Suppose you have two independent
systems running MTS: an Inventory and a Payments system.
Neither have access to each other, nor do they need it. For an
order to take place, though, inventory has to be deducted and
an entry in the Payments server made. The order has to be
completely transactional, otherwise money or inventory could
be lost. The order-processing application is being used by a
user that has access to both systems, so it’s best suited to con-
trol the transaction.

Client transactions are easily accomplished with the
ITransactionContextEx interface. Figure 7 shows an example
piece of code that could be used for such a scenario. We sim-
ply create an ITransactionContextEx interface, use it to create
a Payments and Inventory object (which would be registered
COM objects running on different servers), call the appro-
priate methods, and call either Commit or Abort.

Calling Commit doesn’t guarantee a transaction will be com-
mitted. If any MTS object that was part of the transaction
has returned from a method after calling SetAbort, the trans-
action will be aborted. If any object that was part of the
transaction has called DisableCommit, and hasn’t yet called
15 February 1999 Delphi Informant
EnableCommit or SetComplete, the transaction will also be
aborted. Any error that causes Microsoft Distributed
Transaction Coordinator (MSDTC) to abort a transaction
will also abort an MTS transaction.

Callbacks and References
It’s a common programming technique to give an object a refer-
ence to another object for it to work with. For example, you call
a search routine and pass in a reference to a search object that
implements ISearch. This would allow you to use a different
search method depending on the data being searched. Similarly,
you may want to pass a reference to an MTS object to another
MTS object, or back to the client. If you’re an MTS object, the
client may even want to give you a reference to itself for you to
call back when you’ve finished doing your work. MTS doesn’t
prevent you from doing any of the above, but there are issues
you must be aware of, or you may come “unstuck.”

You can pass object references, for example, to use as a call-
back, in only three ways:
1) through return from an object creation interface, such as

CoCreateInstance, ITransactionContext.CreateInstance, or
IObjectContext.CreateInstance,

2) through a call to QueryInterface, or
3) through a method that has called SafeRef to obtain the

object reference.

SafeRef is an MTS method an object can use to obtain a refer-
ence to itself that is safe to pass outside of its context. An
object reference obtained in one of the above ways is called a
safe reference. MTS ensures that methods invoked using safe
references execute within the correct context. Never pass a self
pointer or a self reference obtained through an internal call to
QueryInterface to a client or another object.

Objects can make callbacks to clients and other MTS
objects, but there are problems in doing so. First, calling

Informant Spotlight
back to a base client or another package requires access-level
security on the client. The client would also have to be a
DCOM server. Second, there may be firewalls blocking the
path back to the client. Finally, any work done on the call-
back executes in the context of the object being called. It
may be part of the same transaction, a different transaction,
or none at all. If you’re controlling the deployment arena for
your application, then you can work around these aspects,
and callbacks become a viable operation.

Activities
There is one final piece of terminology that you may come
across when learning about MTS: the activity. An activity is a
set of objects executing on behalf of a base client application.
Every MTS object belongs to one activity, which is recorded
in the object’s context. For a given object, both the object
that instantiated it and all the descendant objects it has
instantiated will be part of the same activity. The objects can
be distributed across one or more processes, executing on one
or more computers.

The reason for an activity is simple: for all the objects running
in an activity, MTS tracks the flow of execution and enforces a
single logical thread of execution to prevent any inadvertent
parallelism that could cause application state corruption or
deadlock. Activities aren’t something you have to worry about;
simply make sure you use the MTS Object Context to create
instances of objects you want to use, and all work will belong
to the same activity and transaction.

Tips for Development
To wrap up this series, I’d like to give you some pointers on
your road to development. They’re not hard and fast, but
they may help smooth your progress into multi-tier devel-
opment with MTS.

Normal classes in Delphi have a set of properties, methods,
and events defined for them. Most people I see developing
MTS objects head straight down a similar path. An MTS
object is a different animal, however, so you have to learn to
think differently when you design one. If you write your
object with a set of properties on it, then every time a remote
client sets a property on the object, there’s a DCOM remote
procedure call done over the network. This is inefficient and
will slow down your application considerably. Also, properties
imply statefulness. The object must be retaining state between
your calls to set properties so it’s not deactivated or scalable.
Use methods that encapsulate functionality having parameters
that pass in all the information the method needs to perform
its work. That way, the object is deactivated on return from
the method, and the parameters are efficiently packaged in
one bundle for a single network call.

Stateful objects do have their place in MTS, but they’re
not singletons. The best way to implement a singleton is
to have an MTS object that stores its state in the property
manager. This way, multiple instances of the same object
will have the same properties, but will still be stateless.
16 February 1999 Delphi Informant
Define your components and objects, security requirements,
interfaces, and roles before developing any code. Give your
interface type libraries to the front-end guys as soon as you’ve
developed them. They can then start work given what is
effectively your documentation blueprint. Also, by defining
role and security requirements up front, you can better code
the functionality of your objects.

Finally, keep your components fine-grained. A lot of objects
implementing small, closely related interfaces are much easier
to document, debug, reuse, and maintain. They’re also easier
for MTS to scale.

Conclusion
Hopefully, you will now be a lot more familiar and confi-
dent with the MTS environment. You know what it is,
what it’s for, what it can do, and how to develop for it. I’ve
tried to give you an overall picture of MTS throughout this
series, so you can make judgements about whether to use
MTS in parts of your development. As MTS moves into
the core of Windows NT, you’ll see more system software
(particularly enterprise material) use MTS. Microsoft is
pushing Windows NT into the enterprise arena. MTS is
going to be the foundation that helps make this happen, so
you’re bound to come across it at some point.

Hopefully, I’ve proved the point I made when I stated that
Delphi makes developing for MTS a snap. It’s a pity that at
the time of writing this article, no one has yet written a book
covering MTS with the Delphi language. Most books on the
subject are geared, unsurprisingly, toward using Microsoft
development languages. With any luck, this will change.

I’d be pleased to hear any feedback you have about this
series, and to hear your success stories with Delphi and
MTS. If you have any questions about what you’ve read, or
something you don’t understand, please drop me a line. ∆

References
Inside Distributed COM, Guy Eddon and Henry Eddon
[Microsoft Press, 1998], ISBN: 1-57231-849-X.
Inside COM, Dale Rogerson [Microsoft Press, 1997],
ISBN: 1-57231-349-8.
Roger Jennings’ Database Workshop: Microsoft Transaction
Server 2.0, Steven D. Gray, Rick A. Lievano, and Roger
Jennings [SAMS Publishing, 1997], ISBN: 0-672-31130-5.

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\FEB\DI9902PF.

Paul M. Fairhurst is a First Class Computer Science graduate of Sheffield
University and freelance consultant/programmer specializing in client/server
and multi-tier database development. He is currently developing information
systems for BBC Television and Radio in London. You can contact him at
paul@c-s-c.demon.co.uk.

17 February 1999 Delphi Informant

Algorithms
Hash Tables / Probing

By Rod Stephens
Hash It Out
Using Hash Tables to Manipulate Key-based Data

Databases typically use trees to store index information. This lets the data-
base locate items very quickly. For databases stored on a hard disk or

other slow-storage device, speed is critical. Reading data from a disk takes a
relatively large amount of time, so the database must find the data as quickly
as possible. Trees make it easy to find ordered data, but, under some circum-
stances, you can locate items even faster using a hash table. A hash table is a
data structure that allows you to store and retrieve items based on a key. You
can add items to a hash table specifying a key, and later use the keys to locate
particular items.
The Basics
Suppose you want to store and quickly
locate a few dozen items that have unique
integer keys between 0 and 99. You could
build an array with index bounds from 0 to
99. Then you could store an item with key
K in position K in the array. To locate an
item with key K, you would look in posi-
tion K. The following code fragment shows
this simple scheme:

var
values : array [0..99] of Variant;

begin
// Insert an item with key 13 in the array.
values[13] := 'This is a really simple

hashing strategy';

// See if a value with key 27 is present.
if (VarIsEmpty(values[27])) then

ShowMessage('Key 27 is not present')

else
ShowMessage(String('values[27] = ') +

values[27]);

This method is very simple. It’s also
extremely fast. With only a single array
access, you can tell if the item is present
and find its value.

Unfortunately, in the real world, key values
don’t always map into such a conveniently
small range of values. For example, suppose
you want to locate employees using only their
Social Security numbers. There are roughly
one billion possible Social Security numbers
of the form 123-45-6789. To use the previous
hashing strategy, you would need to allocate a
one-billion-entry array. If each employee’s
information occupied 1KB of storage, the
array would take up 1 terabyte (one million
megabytes) of memory. Chances are good
that you don’t have that much memory or
disk space available on your computer. Even if
you had that much storage, more than 99
percent of it would always be unused, unless
you had more than 10 million employees.

In cases like this, where the number of
possible key values is huge, you need to
map the key values into a relatively small
hash table. For example, if you have
around 80 employees, you might create an
array with 100 entries indexed from 0 to
99. Then you could calculate an employee’s
Social Security number modulus 100 and
map the employee’s information to that
entry. For example, an employee with
Social Security number 1234-56-7890
would map to position 90 in the array.

Using this scheme, you would only need
100 employee entries taking up a total of

Algorithms

Figure 2: The quadratic probe sequence will jump through an
array, skipping entries and inserting the new item in a position
not adjacent to the cluster, thus reducing primary clustering.
100KB of memory. If you have 80 employees, only 20
percent of that space is unused, so you’re not wasting a
lot of space.

Note that this array contains only 100 entries, but there are
one billion possible key values. In that case, 10 million possi-
ble key values will map to each array entry. For example, all
Social Security numbers that end with 99 will map to posi-
tion 99 in the array.

That means that sometimes you may try to put a record in
the table, and find it’s already occupied by another record.
This is called a collision. To resolve this problem, you need a
collision-resolution policy. This is a rule that tells where an
entry goes when the place it belongs is already occupied.
Usually, the policy is to re-map the record to another posi-
tion in the table. If that position is also in use, the record is
continuously remapped until an empty position is found.
The sequence of positions that are examined searching for
an empty position is called the item’s probe sequence.

To summarize, a hashing scheme requires three things:
1) A data structure called a hash table that holds the entries.
2) A hashing function that maps keys to entries in the

hash table.
3) A collision-resolution policy that tells where to place an item

when its natural position in the table is already occupied.

Linear Probing
One of the most popular types of hashing is called open
addressing. Here, the value of the key is used to calculate an
offset in memory where the data should be placed. The previ-
ous examples used open addressing to map a key value to a
position in an array.

There are several varieties of open addressing schemes that
differ in their collision-resolution policies. The simplest is
called linear probing. If an item’s position is occupied, the
program simply looks at the next position. If that position
is also occupied, the program looks at the next position.
The program continues looking through the array until it
finds an empty position, or it has searched the entire array.
If the program finds an empty position, it inserts the item
there. Otherwise, the hash table is full, and there is no
room for another item.
18 February 1999 Delphi Informant

Figure 1: Open addressing with linear probing, as demonstrate
Linear program.
The following code shows constants and a record type
used to manage simple hash tables. The hash tables
described here use a resizable array of THashType records
to store data items:

type
// Values for hash table operations.
THashInsertValues = (hashInsertOk, hashInsertTableFull,

hashInsertDuplicateKey);

// Define a record for hashing examples.
THashType = record

Value : Variant;

Key : Longint;

end;

THashTypeArray = array [0..1000000] of THashType;

PHashTypeArray = ^THashTypeArray;

Listing One (beginning on page 20) shows the Delphi
source code for a hash table class that uses open addressing
(available for download; see end of article for details). The
main program creates a TLinearHashTable object, passing
the constructor a parameter that indicates the number of
entries the hash table should use. It can then use the
AddItem function to insert items into the table and the
FindItem function to locate items in the hash table. This
function searches the hash table and returns the value of the
item if the key is present in the table. If the key isn’t pre-
sent, the function returns the Variant value Empty.

Program Linear, shown in Figure 1, demonstrates open
addressing with linear probing (available for download; see
end of article for details). Enter a value in the # Values text

box and click the Make Values button to
make the program insert random values in
the hash table. To keep the program simple,
each item’s value and key are the same and
are numbers between 0 and 999.

Enter a value in the Value text box and click
the Get button to make the program locate
the item in the hash table. In Figure 1, the
program has just located the item 565. Enter
a value and click the Set button to make the
program insert the item in the table.d by the

Algorithms

uad program demonstrates quadratic probing.
Quadratic Probing
Linear probing is fast and simple, but it suf-
fers from an annoying primary clustering
effect. When you add many items to the
hash table, they tend to cluster together. The
hash table shown in Figure 1 is only half
full, but many of the items lie next to oth-
ers. That makes inserting and finding items
slower than it would be if the items were
more evenly spaced. For example, if you try
to insert the value 161 in this table, its
probe sequence will collide with the items
361, 662, 561, 764, 65, 964, 565, 668, and
469 before it finds an empty position.

If the values were spaced exactly evenly, there would be an empty
spot next to every used position. Then the program could find
an empty position for any new item in at most two tries.

The reason clusters form is that there is a slightly higher proba-
bility that a new item will be inserted next to an existing item
than it will land somewhere else. For example, suppose a hash
table with N entries contains one item. When you insert a new
item into the table, there is a 1/N chance that it will land in
any particular position. However, if the item maps to the same
position as the item that is already in the table, it will be insert-
ed next to that item, and it will form a small cluster. If the
item maps to one of the positions next to the previous item,
it will also start a small cluster. There is a 3/N chance that the
new item will land next to the previous item. As the table fills,
the chances are good that large clusters will form.

The reason clusters form is that any item that maps to part
of a cluster gets added to the end of the cluster. You can
prevent that behavior using quadratic probing. In this
method, the indexes in an item’s probe sequence are given
by the equation (K + P2) Mod N where N is the size of the
table, K is the key, and P = 0, 1, 2, ... The program follows
this probe sequence until it finds an empty position, or
until it has checked N positions. At that point, the program
gives up and refuses to insert the new item into the table.

Figure 2 shows two probe sequences for an item being insert-
ed into the first position in a hash table. The linear probe
sequence examines a few adjacent positions, then inserts the
new item next to the others, extending the cluster. The qua-
dratic probe sequence, on the other hand, jumps through the
array (skipping entries), and inserts the new item in a posi-
tion that isn’t adjacent to the cluster.

The way quadratic probing skips through the hash table
makes clusters less likely to form and makes them grow more
slowly. That means a program that uses quadratic probing
can insert and find items more quickly (on average) than one
that uses linear probing.

The code for the TQuadraticHashTable class is very similar to
the TLinearHashTable class. The only differences are in the

Figure 3: The Q
19 February 1999 Delphi Informant
AddItem and FindItem functions, so only these are shown in
Listing Two (on page 21).

The Quad program is similar to the previous example,
except it uses quadratic probing instead of linear probing
(see Figure 3). Even though the same values were inserted
in Figures 1 and 3, the clusters in Figure 3 are smaller.

Pseudo-random Probing
Quadratic probing reduces primary clustering, but it still has
some problems. Items that initially map to the same position
in the array follow the same probe sequence. For example, if
the hash table contains 100 entries, the values 100, 200, 300,
and so on all follow the same probe sequence. If the program
inserts many items that map to the same position, they will
form a secondary cluster spread throughout the array. The
effect is not as noticeable as that of primary clustering, but
still reduces performance.

One way to eliminate secondary clustering is to use a pseudo-
random probe sequence. With this technique, the locations
in an item’s probe sequence are given by (K + Rand(P)) Mod
N, where N is the size of the table, K is the key, P = 0, 1, 2,
..., and Rand(P) is the P th number in a sequence of random
numbers. The sequence of numbers depends on the key’s
value, so different values will have different probe sequences,
even if they initially map to the same position.

In Delphi, you can use the Random function to produce
sequences of pseudo-random numbers. To initialize
Random, set the RandSeed system value equal to the new
key’s value. For example, the program uses the following
code to initialize the random number generator for the
value new_key:

RandSeed := new_key;

When the program later needs to locate this item in the
hash table, it sets RandSeed to the key value again. Then
Random will produce the same sequence of numbers it pro-
duced when the item was added to the table. This is impor-
tant. If it produced a new sequence of random numbers, the
program would not be able to follow the same probe
sequence it used to insert the item, so it would be unable to
find the item.

Algorithms
The TRandomHashTable class is similar to the previous hash
table classes. The only differences are in the AddItem and
FindItem routines shown in Listing Three,beginning on page 21.

Conclusion
While quadratic and pseudo-random probing often give better
performance than linear probing, they also have some draw-
backs. Neither of them is guaranteed to visit every item in the
hash table. For example, suppose you have a hash table with
only eight entries. To insert the item 4 into the table using qua-
dratic probing, the program would follow this probe sequence:

4 + 02 = 4
4 + 12 = 5
4 + 22 = 8 = 0 mod 8
4 + 32 = 13 = 5 mod 8
4 + 42 = 20 = 4 mod 8
4 + 52 = 29 = 5 mod 8
4 + 62 = 40 = 0 mod 8
etc.

After eight probes, the sequence has only visited positions 0,
4, and 5. If all the table’s entries are full except for entries six
and seven, the program cannot insert the item in the table
even though there is space available. Similarly, there is no way
to know if or when a pseudo-random probe sequence will
visit all the entries in the table.

Even so, quadratic and pseudo-random probing usually pro-
vide good performance when the table isn’t too full. Of
course, when the table holds a lot of empty entries, linear
probing does quite well, too.

Using these hash-table classes, you can store items and
search for keys extremely quickly. If you size your hash
table properly, you can get excellent performance — some-
times better than the performance provided by a database
doing indexed retrieval.

There are many other types of hash tables that are useful in
different circumstances. For example, some work well when
the data must be stored on a hard disk. You can learn more
about hash tables and other algorithms in Rod’s book Ready-
to-Run Delphi 3.0 Algorithms [John Wiley & Sons, 1998].
The algorithms run in Delphi 3 or later. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\FEB\DI9902RS.

Rod’s book Ready-to-Run Delphi 3.0 Algorithms [John Wiley & Sons, 1998] has
lots more to say about hash tables and other algorithms. For more information,
visit http://www.delphi-helper.com/da.htm. You can contact Rod via e-mail at
RodStephens@delphi-helper.com.
20 February 1999 Delphi Informant
Begin Listing One — The TLinearHashTable Class
type

// A hash table with open addressing and linear probing.
TLinearHashTable = class

private
HashTable : PHashTypeArray;

NumItems : Longint;

NumUsed : Longint;

public
constructor Create(size : Longint);

destructor Destroy; override;
function AddItem(new_value: Variant;

new_key: Longint): THashInsertValues;

function FindItem(target_key: Longint): Variant;

function FindItemAndIndex(target_key: Longint;

var index: Longint): Variant;
function ValueByIndex(index: Longint): Variant;

end;

// Allocate the hash table.
constructor TLinearHashTable.Create(size: Longint);

var
i : Longint;

begin
inherited Create;

// Allocate the hash table entries.
NumUsed := 0;

NumItems := size;

GetMem(HashTable, NumItems * SizeOf(THashType));

// Initialize the hash table entries to Unassigned.
for i := 0 to NumItems - 1 do

HashTable^[i].Value := Unassigned;

end;

// Free the hash table.
destructor TLinearHashTable.Destroy;

begin
if (HashTable <> nil) then

FreeMem(HashTable);

inherited Destroy;

end;

// Add an item into the hash table. Return hashInsertOk,
// hashInsertTableFull, or hashInsertDuplicateKey to
// indicate our success or failure.
function TLinearHashTable.AddItem(new_value: Variant;

new_key: Longint): THashInsertValues;

var
probe : Longint;

begin
// Make sure there is room.
if (NumUsed >= NumItems) then

begin
// The table is full.
AddItem := hashInsertTableFull;

end
else

begin
// Find the first probe sequence value.
probe := new_key mod NumItems;

// While that position is occupied, try the next one.
while

(not VarIsEmpty(HashTable^[probe].Value)) do begin
// Make sure this key value is not already in use.
if (HashTable^[probe].Key = new_key) then

Break;

// Check the next position in the probe sequence.
probe := (probe + 1) mod NumItems;

end;

// See if we found an empty position.
if (VarIsEmpty(HashTable^[probe].Value)) then

http://www.delphi-helper.com/da.htm

Algorithms
begin
// Insert the item.
HashTable^[probe].Value := new_value;

HashTable^[probe].Key := new_key;

Result := hashInsertOk;

// Keep track of the number of entries used.
NumUsed := NumUsed + 1;

end
else

begin
// The key is already used.
Result := hashInsertDuplicateKey;

end;
end; // End (NumUsed >= NumItems) ... else ...

end; // End function AddItem.

// Find an item in the hash table. Return the item's
// value or Unassigned if it is not here.
function TLinearHashTable.FindItem(target_key: Longint):

Variant;

var
trial, probe: Longint;

begin
// Find the first probe sequence value.
probe := target_key mod NumItems;

// Search positions until we find the target, an entry
// that is unused, or we have checked the entire table.
for trial := 1 to NumItems do begin

// See if this entry is unused.
if (VarIsEmpty(HashTable^[probe].Value)) then

Break;

// See if this entry is the target.
if (HashTable^[probe].Key = target_key) then

Break;

// Consider the next item in the probe sequence.
probe := (probe + 1) mod NumItems;

end;

// See if we found the entry.
if ((not VarIsEmpty(HashTable^[probe].Value)) and

(HashTable^[probe].Key = target_key)) then
// We found it. Return the target value.
Result := HashTable^[probe].Value

else
// The value is not here. Return Unassigned.
Result := Unassigned;

end; // End of function FindItemAndIndex.

End Listing One
Begin Listing Two — The TQuadraticHashTable Class
// Add an item into the hash table. Return hashInsertOk,
// hashInsertTableFull, or hashInsertDuplicateKey to
// indicate our success or failure.
function TQuadraticHashTable.AddItem(new_value: Variant;

new_key: Longint): THashInsertValues;

var
trial, probe: Longint;

begin
// Try up to NumItems times to find an open position
// or this key.
for trial := 1 to NumItems do begin

// Find the next probe sequence value.
probe := (new_key + trial) mod NumItems;

// See if the position is unoccupied.
if (VarIsEmpty(HashTable^[probe].Value)) then

begin
// It is. Take this position.
HashTable^[probe].Value := new_value;

HashTable^[probe].Key := new_key;

Result := hashInsertOk;

Exit;
21 February 1999 Delphi Informant
end;

// See if this is the target key.
if (HashTable^[probe].Key = new_key) then

begin
// It is. The key is already here.
Result := hashInsertDuplicateKey;

Exit;

end;
end;

// If we get here, we failed to find room.
Result := hashInsertTableFull;

end; // End function AddItem.

// Find an item in the hash table. Return the item's
// value or Unassigned if it is not here.
function TQuadraticHashTable.FindItem(target_key: Longint):

Variant;

var
trial, probe : Longint;

begin
// Search positions until we find the target, an entry
// that is unused, or we have tried NumItems times.
for trial := 1 to NumItems do begin

// Calculate the next probe sequence value.
probe := (target_key + trial) mod NumItems;

// See if this entry is unused.
if (VarIsEmpty(HashTable^[probe].Value)) then

begin
// The value is not here. Return Unassigned.
Result := Unassigned;

Exit;

end;

// See if this entry is the target.
if (HashTable^[probe].Key = target_key) then

begin
// We found it. Return the value.
Result := HashTable^[probe].Value;

Exit;

end;
end;

// If we get here, we failed to find the item.
Result := Unassigned;

end; // End of function FindItem.

End Listing Two
Begin Listing Three — The TRandomHashTable Class
// Add an item into the hash table. Return hashInsertOk,
// hashInsertTableFull, or hashInsertDuplicateKey to
// indicate our success or failure.
function TRandomHashTable.AddItem(new_value: Variant;

new_key: Longint): THashInsertValues;

var
trial, probe: Longint;

begin
// Initialize the random number generator for the key.
RandSeed := new_key;

// Try up to NumItems times to find an open position
// or this key.
for trial := 1 to NumItems do begin

// Find the next probe sequence value.
probe := (new_key + Random(NumItems)) mod NumItems;

// See if the position is unoccupied.
if (VarIsEmpty(HashTable^[probe].Value)) then

begin
// It is. Take this position.
HashTable^[probe].Value := new_value;

HashTable^[probe].Key := new_key;

Algorithms
Result := hashInsertOk;

Exit;

end;

// See if this is the target key.
if (HashTable^[probe].Key = new_key) then

begin
// It is. The key is already here.
Result := hashInsertDuplicateKey;

Exit;

end;
end;

// If we get here, we failed to find room.
Result := hashInsertTableFull;

end; // End function AddItem.

// Find an item in the hash table. Return the item's
// value or Unassigned if it is not here.
function TRandomHashTable.FindItem(target_key: Longint):

Variant;

var
trial, probe : Longint;

begin
// Initialize the random number generator for the key.
RandSeed := target_key;

// Search positions until we find the target, an entry
// that is unused, or we have tried NumItems times.
for trial := 1 to NumItems do begin

// Calculate the next probe sequence value.
probe := (target_key + Random(NumItems)) mod NumItems;

// See if this entry is unused.
if (VarIsEmpty(HashTable^[probe].Value)) then

begin
// The value is not here. Return Unassigned.
Result := Unassigned;

Exit;

end;

// See if this entry is the target.
if (HashTable^[probe].Key = target_key) then

begin
// We found it. Return the value.
Result := HashTable^[probe].Value;

Exit;

end;
end;

// If we get here, we failed to find the item.
Result := Unassigned;

end; // End of function FindItem.

End Listing Three
22 February 1999 Delphi Informant

23 February 1999 Delphi Informant

Columns & Rows
Delphi 3 Client/Server / Multi-tier Database Development

By Thomas J. Theobald

Figure 1: The four-tier “s
Multi-tier Database Applications
Part II: Getting to the Code

Last month we defined an application with four partitions: user interface,
business logic, data access, and data storage. We explored the rationale for

the various partitions, and described the steps for planning and building such an
application. This month we turn to the implementation, i.e. the code. (All source
referenced in this article is available for download; see end of article for details).
When I first had the idea for this series, I
wanted to demonstrate a couple of ways of
building the application. I’ve tried three,
but I’m only going to demonstrate the easi-
est of them (since we’re talking about get-
ting stuff done on time, and on budget, this
is probably for the best). I will, however,
provide a brief description of the problems
I encountered with the other two.

Model One: Four-tier “Straight-pipe” Model
This model attempted to take a “normal”
three-tier model built in Delphi, and insert an
additional physical tier into the stream (see
Figure 1). In keeping with the principles
described last month, I had hoped this would
allow me to manage development as four sep-
arate projects, thus allowing me to redeploy
whichever one needed changing.

Unfortunately, this meant that the road the
information took — database-dataset/-
provider-client dataset — needed an additional
layer similar to the “client dataset” type to be
created. Because TClientDataSet doesn’t have
its own provider, and a TProvider wouldn’t
accept a TClientDataSet as its dataset, I
assumed that meant I would have to design a
whole new component that would be a new
variety of TProvider to accept the
TClientDataSet. I don’t have that kind of time,
traight-pipe” model.
although it sounds like it might be interesting
to play around with.

Model Two: Inheritance
This model created an ancestor Data Access
data module, from which descended the
Business Logic remote data module (see
Figure 2). With this model, I had hoped to
apply a three-tier physical model, while main-
taining the DA and BL layers as separate pro-
jects, producing a conceptual four-tier model
that would still be easy to manage.

I found that, although it was simple to gener-
ate the ancestor DA element, I was forced to
manually write the type library and all its
attendant functions in the descendant class. If
I were into writing interfaces, this could be
fun, but I’m assuming that most developers
have neither the time nor the inclination for
this. It’s entirely too messy for me to deal
with as an application developer — perhaps
as a tool developer, but not otherwise.

Model Three: Peer-level Middle Partitions
So, instead of a straight-through approach, I
decided to make my middle partitions peers
instead of hierarchical (see Figure 3). Each one
became a remote data module unto itself, with
the DA partition drawing rules and validation
from the BL partition as needed. This, I hoped,
would allow me to maintain physical and con-
ceptual separation. Not only that, but I could
also shamelessly pirate the EmpEdit demonstra-
tion from Delphi’s included MIDAS demonstra-
tions for this exercise.

Figure 3: This model has peer-level middle partitions.

Figure 2: The inheritance model.

Columns & Rows
I’m going to direct the validation of a few fields at the DA parti-
tion to some functions provided from the BL partition. It’ll be
simple at first. After that, I’ll change the rules a little, and actual-
ly stream a rules component over to the DA partition from the
BL partition to accomplish the same goal (using a technique
published in David Body’s article “DCOM Streaming” in the
March, 1998 Delphi Informant).

How Do We Do This?
Using Delphi, we have a few components that are specific to
this n-tier stuff. I’ll run through the layers and describe the
components we use to set it up.

On the DS side, there are no differences between two-tier,
three-tier, or n-tier levels. Our data side doesn’t care what gets
access, as long as it fits its own criteria of who is allowed.

On the DA side, we build this application as if we were
building a standard two-tier model. We use TDataSet descen-
dants (TStoredProc, TQuery, and TTable — although proba-
bly not TTable if we’re working with a SQL server) to get the
data out of the data server. The difference here is that instead
of a standard TDataModule, we use a remote data module.

If you select File | New, you’ll see a Remote Data Module avail-
able. Choosing that will produce a data module that looks
incredibly like the standard one, but includes an interface defin-
ition as part of its class, as well as a type library. As you add
datasets to the remote, you’ll publish them to outside applica-
tions by right-clicking on them and choosing export <dataset

name> from data module. This will add a stub function to the
type library, and the data module that returns a provider for
that specific dataset. Note that you don’t have to do this; there
may be some datasets that exist solely for internal use, such as
providing lookup fields.

This is where you drop the TDatabase control. There might be a
temptation to make a single TDatabase on a separate data mod-
ule and have every instance of your remote data module pass
through it. Not bad, if you’re using implicit transaction control.
24 February 1999 Delphi Informant
However, if you ever want to write a commit or rollback condi-
tion, you’ll be applying that condition to every attached user.
Include a TDatabase on your remote data module to give each
user separate transaction control. Someone will probably point
out that this will do away with the license-cost benefit of having
an n-tier system on servers that license at a per-connection rate;
they may have been hoping that they only need to pay for a
number of clients corresponding to the number of middle-tier
attachments. If it means that much to you, don’t use explicit
transaction control, or buy a server that charges a per-client rate
instead of per-connection, or perhaps one that charges on a per-

connected-machine rate. If the savings on client
licenses is an issue, development with a smaller model
may need to be considered.

Let’s look at a hypothetical case. If we have a corpo-
ration that can potentially buy licenses for 30,000
users at a ballpark of US$300 each (don’t quote me

on that pricing; contact your database vendor), we’re looking at
roughly US$9 million for client licenses (I’m sure bulk pricing
brings it down a lot). If we put 100 users on each middle tier,
we’re down to 300 client licenses at a cost of US$90,000, the
cost difference being US$8.1 million. Considerable. The serv-
er(s) software and hardware will probably be another few mil-
lion. I would like to think that if one could demonstrate a dif-
ference of US$8.1 million to a CEO, CFO, and CIO in the
same room, the CEO would probably go along with the CFO
and tell the CIO to buy the database server that provides those
savings. Of course, each case will be different, but when given
hard numbers and argued logically, pitching the case the devel-
opment team wants shouldn’t be that difficult.

It would also probably be of little use to generate anything
more than a rudimentary UI for this partition because it
won’t be viewed by the user community. If your client wants
one, great. Budget time for it. Just be aware it isn’t necessary.

Now we have DS and DA defined. Next is the client side.

At the client, instead of standard TDataSets (I define stan-
dard as TQuery, TStoredProc, and TTable), we’ll use
TClientDataSet as our connection. We’ll also use the
TRemoteServer instead of a TDatabase here. The
TRemoteServer will connect to the middle tier, and will
give access to all the published IProviders on that middle
tier. (Neat little factoid: If you don’t know the providers
coming to you, you can get a full list of them from the
TRemoteServer once it establishes a connection; it’s avail-
able through a procedure called GetProviderNames.) Step
by step, this would be:
1) Drop a TRemoteServer in your UI application.
2) Choose or give it a computer and server name.
3) Drop a TClientDataSet in your application.
4) Wire its RemoteServer property to the TRemoteServer you

just added.
5) Choose or enter a provider in the ProviderName property

corresponding to one provided by the application server.
6) Set it active to see if you get data back.

A element. Figure 5: An InterBase version.

Columns & Rows
Any of these steps could be done
at run time, as well as design time.
It might be a bit more difficult,
but it’s possible.

Packets
These interactions revolve around
“packets,” or “deltas,” which are
simply small packages of infor-
mation passed between the
TClientDataSet and its applica-
tion server.

What happens, in short, is as fol-
lows: When the client dataset
opens, it calls the provider at the
middle tier. The provider goes to
its dataset, opens it (if it isn’t
open already), and retrieves a
dataset. The provider then pack-
ages the dataset into what is called
a Data Packet, and sends that back downstream to the client
dataset. The client dataset then supplies that packet to the
system as a representation of the data. The user then makes
changes, deletions, or insertions, and tells the UI to
ApplyUpdates (those of you familiar with cached updates will
see many similarities here).

The client dataset acts on that command, assembles a Delta
Packet consisting of any differences between the current state
of the data at the UI and the original set it received from the
provider, and ships this delta back to the provider. The
provider then automatically applies this delta to the dataset as
a change to stored data, row-by-row. If any updates fail, the
provider stores the row with its old value (which it originally
supplied to the client dataset), the current value (what the
provider just found at the storage side), and the new value
(which the user just tried to input) in a resulting data packet
to be sent back to the client. The client dataset can then cycle
through these erroneous records in its ReconcileError event.

The Elements
As stated earlier, I’ve pirated a copy of the EmpEdit demon-
stration included with Delphi and C++Builder C/S versions.
I’ve taken that application and enhanced it to some degree
for this example. I suggest you take a copy for yourself and
try adding the functionality I describe here, simply to get the
hang of n-tier thinking.

DS. The first partition will be the database side. I’ll start with
one that everyone has access to and comes supplied for
Paradox: DBDEMOS. I’ve already used DataPump to pro-
duce an InterBase version, and the same could be done for an
Oracle, Sybase, etc. data side. Fortunately for this example,
it’s already done.

DA. The DA partition will be two partitions; because I’m
trying to be independent of database vendors, I’m going to

Figure 4: A Paradox-based D
25 February 1999 Delphi Informant
end up generating two DA elements that fulfill the same role.
I’ll start with a Paradox-based one (see Figure 4), and when
I’ve finished the initial application, I’ll create an InterBase
version (see Figure 5) and install a switch at the UI.

The DA partition will end up linking to the BL partition
using a TRemoteServer, and will pass validation requests on to
the BL partition using that component’s AppServer property.
Operationally, this will be similar to a three-tier application;
the difference will be in avoiding the work of recoding the
business logic when we create our second DA partition.

This multi-tier stuff does deserve a note on how it seems to
know what is going on across multiple machines. The idea
of DCOM is that component objects will share a format.
This makes it easier for one application to use the objects of
another, and so forth. The means by which component
objects are identified under COM/DCOM are Globally
Unique Identifiers, or GUIDs. So far, GUIDs have proved
to be just that — completely unique identification numbers
for application components. If you look into a bare-bones
type library (like the ones included with my source code,
which are available for download; see end of article for
details), you’ll see three or four GUIDs.

When we tell a TRemoteServer about an application we
want it to access, we first give it a machine name (or leave
that blank if we intend to run off the same box) to identi-
fy under Windows where we are going to find the applica-
tion server. We then specify a ServerName to identify the
application we want to access; we could specify a bare
GUID if we were certain of the one we need. When we
make a connection, the TRemoteServer goes to Win32 and
says: “Please find this object on this server and give me a
handle to it.” If the local OS finds the machine in ques-
tion, it asks it for a handle to the specific object, and
returns the result. This is why the application server needs

Columns & Rows

Figure 6: The BL partition supplies a simple rule for salary
validation.

Figure 7: The UI uses a standard form from the EmpEdit appli-
cation, and the error reconciliation routine from RECERROR.PAS.
I’ve added a drop-down listbox with the names of both servers
and the GUIDs they use to identify themselves.
to be registered before any other applications try to get to
it (if Win32 doesn’t know it’s there, it can’t find it).

Our DA partition will be an enhancement to the server
application of the EmpEdit demonstration. The server appli-
cation will have a few changes made:

A display of how many rule objects it has invoked will be
added, with modifications to the data module’s Create
and Destroy event handlers.
The EmpQuery will have its fields instantiated at design time.
The EmpQuerySalary field will have a validation event added.

BL. The BL partition of this system (see Figure 6) will
supply a simple rule for salary validation (denying the
change of a salary to more than US$100,000 from this
application), which will be referenced by the UI partition
passing through DA. It will also surface a property called
SalaryBreak, which will contain the value of the maximum
salary allowed to be assigned by a non-CFO employee.
Any changed data that passes through the DA partition
will have to qualify as valid under that restriction, or be
denied at the UI.

Additionally, I will install a function that will serve up a
“live” object for the DA partition to invoke, which will
contain much the same information as DA already
retrieves from BL. The key point to note in this practice is
that, when employing the “briefcase model,” most users
won’t have access to the BL layer, even though they might
have local copies of the data. By downloading a “rules
object” to the UI, a briefcase-style user could then stream
that set of rules to disk at shutdown, and re-load it every
time the system runs. When the user finally reconnects,
any new version of the rules server can be streamed down
to replace the existing local one. I won’t demonstrate this
full briefcase technique, but I will have an object stream
across to the DA side for use at that level. (The briefcase
model will be the subject of an article by Bill Todd in next
month’s Delphi Informant.)
26 February 1999 Delphi Informant
I’d like to point out that the example I’ve supplied uses a
remote data module inside an application for a rules
source. Given the nature of the application, it would prob-
ably be best run as a single-instance server on the same
box as the DA partition, and every instance of the DA
server’s module could reference the same BL module.
Some instances could require a multi-instanced version of
the BL partition on a separate machine, but the conditions
for that would be rare. I could just as easily have supplied
a library file to do the same job as the module I’ve given
here. In fact, this is the difference between an in-process
and out-of-process solution. In-process means something
tied directly into the process, while out-of-process refers to
getting something from an external source. Generally, in-
process servers are faster, but use the same machine — and
therefore resources — as the application using them, while
out-of-process servers take a little more time to operate,
but operate in a resource pool that is isolated from the
application using them.

I need to mention a few things about the code sample. The
BL partition, and the two DA partitions, each have a cou-
ple of labels on them referring to “business objects.” The
BL partition has the label of B.L. Objects Outstanding and
the DA partitions refer to “rule objects.” These are mislead-
ing titles that I had intended to use as representations of
the BL partition serving a complete binary object to each
DA partition from which to access rules, using DCOM
streaming. Unfortunately, I didn’t have time to incorporate
this before completing this article.

UI. This will be a very simple front-end, with the standard
form from the original EmpEdit application and the error
reconciliation routine from RECERROR.PAS (see Figure 7).
I’ve added one change: a drop-down listbox with the names
of both servers and the GUIDs they use to identify them-
selves. This allows the user to determine which server they
attach to. (Developers would generally use this functionality
themselves, but it makes a nice touch for the demonstration.)

Conclusion
We’ve seen the components in Delphi/C++Builder that com-
bine to make a functional n-tier application: TClientDataSet,

Columns & Rows
TRemoteServer, TProvider, and remote data modules. Each
has its role to play, and each fits in well with the DCOM
platform this particular set was built to handle.

We also talked about planning. I want to stress again that
this stuff isn’t easy. Don’t let anyone try to convince you
this doesn’t take a lot of sweat to produce. The application
I’ve used as an example here is trivial (not to make light
of the developer who built the demonstration I used as
a foundation). A real n-tier application will take blood,
sweat, and tears and, without proper planning, will never
get done. I guarantee that if you don’t plan properly,
you’ll not only have a bad application, you’ll also have a
high turnover rate from all the disgusted developers who
won’t be able to believe the architecture they’re being
asked to pursue.

I’d like to sign off with a note on the potential Internet use of
this strategy: Deploying a thin client via the Internet will allow
the developer to keep the business logic and storage inside the
IS department’s “ivory tower,” but will allow the users to roam
freely around the world. Deploy an ActiveX client application,
and they’ll be able to browse it from its cache freely. If you can
pull that off, your users will love you. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99FEB\DI9902TT.

Tom Theobald is a senior software developer with Response Networks, Inc. of
Alexandria, VA. He began his career with computers as a NetWare engineer,
moving later to include NT and Lotus Notes among his acquired skill set.
Currently he is developing network response-time diagnostic tools used in the
identification of network brown-outs and the prevention of down time. He can
be reached at ttheobald@responsenetworks.com with any questions or com-
ments. Death threats and other matters of a personal nature can be forwarded
to eviltom@worldnet.att.net.
27 February 1999 Delphi Informant

28 February 1999 Delphi Informant

The API Calls
Cryptography / Internet / Communications

By Mujahid Beg

Figure 1: Gen
For Your Eyes Only
Working with the Microsoft CryptoAPI

W ith the advent of the Internet as a critical business tool, data security has
been pushed into the limelight. “Secure Commerce” and “Secure E-Mail”

are becoming mainstream buzzwords. Understandably, in this age of Internet
data, application support of security features has become extremely important.
Historically, from a developer’s perspective, security has always been difficult to
implement. Bruce Schneier, noted cryptographer and author of Applied
Cryptography: Protocols, Algorithms, and Source Code in C [John Wiley & Sons,
1995], says it well: “Building a secure cryptographic system is easy to do badly
and very difficult to do well. Unfortunately, most people can’t tell the difference.”
e

The average cryptography developer has many
obstacles to overcome. Besides the buzzwords
and the new concepts, there are also complex
algorithms and protocols to master. Then
there are those nasty royalty and patent issues
for the most popular and proven algorithms.
Export restrictions on products using cryptog-
raphy are also a major headache. On top of all
this, just using secure and proven cryptograph-
ic algorithms in an application doesn’t guaran-
tee it’s cryptographically secure. A weak imple-
mentation could turn a locked safe into a glass
window, and, worse, the security holes may
not be discovered until an important client
loses a million transactions.

Enter the Microsoft Cryptographic Application
Programming Interface, or CryptoAPI for
short. Version 1.0 of CryptoAPI was shipped
with Internet Explorer 3.0, and Version 2.0 was
shipped with Internet Explorer 4.0 and
Windows 95 OSR2. This article will explore
ral architecture of the Win32 cryptographic system.
some basic CryptoAPI concepts and develop a
tCryptography class to make its use from Delphi
easier. Finally, the developed class will be used to
build a utility program to encrypt/decrypt files.

As with any relatively new Win32 API, using
CryptoAPI with Delphi is painful because the
API header file from Microsoft (WinCrypt.H)
is written in C, and a translated Delphi unit
from Inprise isn’t available yet. For this article’s
demonstration utility, Crypton, the relevant
parts of the WinCrypt.H header file have been
translated (this and other files referenced in
this article are available for download; see end
of article for details). This will allow for the
encryption/decryption of data in any applica-
tion, but all the signature and certificate-related
stuff is left out. There are at least two freeware
header file translators for Delphi, but neither
of them were quite up to the task of automati-
cally translating the complete header file.

Before delving into the details of CryptoAPI, a
few cautions are appropriate. By virtue of its
inclusion as part of the Windows operating
system, many developers will be encouraged to
include security functionality within their
applications. This means any security hole in
CryptoAPI will potentially affect a huge num-
ber of secured systems. At first glance, the
chance of this happening seems extremely
remote. But, although CryptoAPI was devel-

Algorithm Base Provider Enhanced
Key Length Provider Key

Length (Salt)

RSA public-key 512 bits 1,024 bits (No)
signature algorithm
RSA public-key 512 bits 1,024 bits (No)
exchange algorithm
RC2 block 40 bits 128 bits (Yes)
encryption algorithm
RC4 stream 40 bits 128 bits (Yes)
encryption algorithm
DES Not supported 56 bits (No)
Triple DES (2-key) Not supported 112 bits (No)
Triple DES (3-key) Not supported 168 bits (No)

Figure 2: Base CSP versus Enhanced CSP.

The API Calls
oped by a group of talented designers and programmers at a
multibillion-dollar company, it doesn’t guarantee the security of
the implementation. Consider the fact that most application
developers will probably look to Microsoft’s CryptoAPI docu-
mentation for examples and code snippets. John Boyer of UWI
Unisoft Wares, Inc. published an article in the June, 1998 issue
of Dr. Dobb’s Journal, wherein he points out how one of the
sample programs that uses digital signatures with certificates has
a severe security weakness.

Another factor that CryptoAPI brings to light has nothing to
do with CryptoAPI itself. Because of the ease-of-use of this API,
many developers will incorporate security features in their appli-
cations using this API. A fair percentage of these developers will
have only a vague understanding of the vast and complex topic
of cryptography. This creates a potential for a great deal of risk;
it’s far too easy for a developer to make seemingly clever design
decisions that compromise an otherwise secure system.

CryptoAPI Basics
An analogy might help in understanding the architecture of
CryptoAPI. The Win32 Graphics Device Interface (GDI)
layer provides an API layer between the application and the
graphics card driver, and thus protects the developer from the
painful experience of talking to each type of graphics card
separately. In a similar fashion, the CryptoAPI provides
driver-independent access to cryptography services. In other
words, access to all cryptography services is done through a
standard API layer that uses the implementation-layer DLL
to do the real work. In the world of CryptoAPI, this driver is
a Cryptography Service Provider, or CSP.

CSPs from multiple vendors may be installed on a single
machine at any time. An application can explicitly choose a
CSP to use, or let the system select the default CSP for a
particular user. Figure 1 shows the general architecture of the
Win32 cryptographic system. Applications talk to the oper-
ating system through the CryptoAPI, and the operating sys-
tem converts the calls to CryptoSPI (Service Provider
Interface) calls. For security and other reasons, the applica-
tion never directly talks to the CSP.
29 February 1999 Delphi Informant
The CSPs are responsible for providing all the crypto-
graphic services, including creation and storage of keys,
encryption/decryption of data, storage and management of
certificates, and hashing and signing functionality.
Different CSPs can implement different sets of algorithms
and key storage techniques — some store encrypted keys
in the registry, while others may store them in a smart
card or use a fingerprint as a persistent pseudo-key.
Currently, there are CSPs available from Microsoft and
several other vendors (check Microsoft’s Web site,
http://www.microsoft.com, for a listing).

Microsoft Base Cryptographic Provider is a general-purpose
CSP that supports digital signatures and data encryption. This
provider is included with Internet Explorer 3.0, or later, and
will become part of future Windows operating systems. An
enhanced provider, which is backward-compatible to the base
provider but offers better security, is also available. Because of
export restrictions, this CSP is only available to North
American users. The difference between the two CSPs is sum-
marized in Figure 2.

In an application, the first requirement is to initialize the
desired CSP (see Listing Four beginning on page 31).
Information about the desired cryptographic provider is
passed to the CryptAcquireContext function, which returns a
handle to the provider in the form of an HCRYPTPROV
type value. For security reasons, information between the
CSP and the application is passed in the form of opaque han-
dles. The value returned by this function is one such handle;
there are others for keys, hash objects, etc.

Keys to the Safe
Every CSP maintains its own set of keys for each user on a
machine. The keys are stored in a persistent secure storage
known as the key container. The most common place to save
a key container is in the system registry, but it’s not a require-
ment. A CSP could choose to store the keys on a smart card,
or whatever medium is appropriate.

If there is no previously created key container available,
the CryptAcquireContext call will fail. For the Crypton pro-
gram, a key container isn’t really necessary, because a user-
supplied password will be used to generate the keys. But,
none of the other CryptoAPI calls can be made without
acquiring a cryptographic context first. So the
CryptAcquireContext function must be called again with
the CRYPT_NEWKEYSET flag set to create a default-key
container for the current user.

The SetPassword procedure takes a user-supplied password and
generates a key from it (see Figure 3). To do this, a hash object is
needed, which is created with a call to the CryptCreateHash func-
tion. The password string is hashed within this hash object with
the CryptHashData function. Finally, a call to CryptDeriveKey is
used to generate the key from the current hash object, after which
the hash object and the old key are freed. The newly created key
handle, an HCRYPTKEY type value, is stored within the object,

http://www.microsoft.com

The API Calls

procedure tCryptography.SetPassword(PassCode: string);
const
// Mix up the password a bit.
cPassText = 'This (%s) is the thing';

var
hOldPassKey: HCRYPTKEY;

hHash: HCRYPTHASH;

msg: string;
begin
if Length(PassCode) < cMinPassLen then

RaiseErr(Format(

'Password must be at least %d characters',

[cMinPassLen]));

// Create a hash object.
if CryptCreateHash(hprov, cHASH_ALGID,

0, 0, hHash) = False then
RaiseErr('Unable to create has object');

try
msg := Format(cPassText, [PassCode]);

// Hash the Formatted password string.
if CryptHashdata(hHash, PChar(msg),

Length(msg), 0) = False then
RaiseErr('Unable to hash password data');

// Create a key using this hash object.
hOldPassKey := hPassKey; // Save old key handle.
if CryptDeriveKey(hProv, cCRYPT_ALGID, hHash,

cKEY_FLAGS, hPassKey) = False then
RaiseErr('Unable to derive password hash key');

if hOldPassKey <> 0 then // Free old key handle.
if CryptDestroyKey(hOldPassKey) = False then
RaiseErr('Unable to destroy old password key');

finally
CryptDestroyHash(hHash); // Destroy the hash object.

end;
end;

Figure 3: The SetPassword procedure.
but the password string is not. Note that this provides for better
security; the password string isn’t available anymore, and the han-
dle to the key is only meaningful to the CSP module within the
current cryptographic context. This is an advantage of the opaque
handle approach. An application might have a handle to some
data, but the actual data (a key in this case) remains unavailable.

The user password string can be passed in to the tCryptography
object constructor as a parameter. This way, the object can be
created with the password, and then the password string may
be destroyed or erased. The object with the saved key handle
remains usable throughout the application. Although this
scheme provides better security, in some applications you will
need to change the password. The write-only password prop-
erty lets you do just that.

The tCryptography object constructor automatically con-
verts passwords to upper case before passing them on to the
SetPassword function. In any significant application, this is
a definite cryptographic no-no, because doing so reduces
the key space significantly. For the Crypton utility, howev-
er, usability and ease-of-use were given more importance.

Passing the Data
To encrypt a file, complete file contents are read into a
buffer, encrypted, and then written back to the file.
Because an encryption operation usually doesn’t perform
any compression of the data, the buffer needed to store
the encrypted data (cyphertext) is the same size, or larger
30 February 1999 Delphi Informant
than, the original data (plaintext) buffer. On the other
hand, in the decryption phase, the plaintext buffer
required is the same size, or smaller, than the cyphertext
buffer. Buffer sizes are adjusted accordingly in the
DoOperation procedure (see Figure 4).

The two functions, AllocAndLoadBuffer and
SaveAndFreeBuffer, handle file input/output for the object (see
Listing Five on page 30). These two functions also manage the
“Magic” text, a constant file header that’s written at the begin-
ning of every encrypted file. This enables the object to detect
multiple-encryption attempts on an already-encrypted file, or
decryption attempts of a plain-text (non-encrypted) file. Any
string of characters unlikely to appear by chance in a file can
be used as magic text. The tCryptography object uses “elifdet-
pyrcnenasisiht”. In encryption mode, if the file header match-
es the magic text, it assumes the file is already encrypted and
exits. After all, how often does a file start with the phrase “this
// Encrypt or Decrypt a file depending on the passed in
// OpMode parameter. The input file name and the output
// file name may be the same. Since the entire file is read
// into a buffer before processing, there are no conflicts.
procedure tCryptography.DoOperation(OpMode: tOpMode;

InFileName, OutFileName: string);
var
Buff: pByte;

BuffSize, CryptBuffSize, ClearTextSize: dWord;

ft: tFileTime;

begin
// Load the input file contents.
AllocAndLoadBuffer(opMode, InFileName, buff, BuffSize);

if Buff = nil then
Exit;

ClearTextSize := BuffSize;

CryptBuffSize := BuffSize;

try
if opMode = omENCRYPT then

begin // Encryption.
// First we need to know the buffer size needed to
// store the cyphertext.
if CryptEncrypt(hPassKey, 0, True, 0, nil,

CryptBuffSize, ClearTextSize) = False then
if GetLastError <> ERROR_MORE_DATA then

RaiseErr('Unable to get encrypted buffer size');

// Allocate the required buffer.
ReallocMem(buff, CryptBuffSize);

BuffSize := CryptBuffSize;

// Now encrypt the data buffer.
if CryptEncrypt(hPassKey, 0, True, 0, buff,

ClearTextSize, BuffSize) = False then
RaiseErr('Unable to encrypt data buffer');

end
else // Decryption.
if opMode = omDECRYPT then
if CryptDecrypt(hPassKey, 0, True, 0, Buff,

ClearTextSize, BuffSize) = False then
RaiseErr('Unable to decrypt data buffer.' +

#13 + 'Possibly incorrect password');

// Save buffer to output file.
SaveAndFreeBuffer(opMode, OutFileName, buff,

ClearTextSize, BuffSize);

except
if buff <> nil then

FreeMem(buff, BuffSize);

raise;
end;

end;

Figure 4: The DoOperation procedure.

Figure 5: The customized “Open” dialog box.

The API Calls

procedure TMainForm.OpenDialogShow(Sender: TObject);

begin
// Change the window caption.
SetWindowText(GetParent(OpenDialog.handle),

PChar('Select files to ' + cOpNameStr[CurrOpMode]));

// Change the open button caption.
SendMessage(GetParent(OpenDialog.handle),

CDM_SETCONTROLTEXT, 1, Integer(PChar(

'&'+ cOpNameStr[CurrOpMode])));

end;

Figure 6: The OpenDialogShow event handler.
is an encrypted file” written backwards? The opposite happens
in decryption mode; if the magic text doesn’t match, decryp-
tion is canceled.

A Non-standard Dialog Box
During development of the utility program, a file selection
dialog box, capable of allowing the user to select multiple
files, was needed. The standard Windows file open dialog
box would work, as long as the multiple file selection prop-
erty was enabled. However, this standard dialog box is just a
little too standard; the caption always reads “Open,” as does
the default button caption. It’s preferable to customize this
dialog box to reflect the actual operation (see Figure 5).

Changing the caption is easy. In the TMainForm.OpenDialogShow
event handler, the SetWindowText function is called to perform
this task (see Figure 6). Changing the Open button caption
is a little trickier. The dialog resource for this dialog box is
stored in a standard Windows system DLL, namely
ComDlg32.DLL. The control ID of the Open button can be
looked up by opening this DLL, and loading the dialog
resource in a resource editor. In this case, the Open button
control ID is 1 and the Cancel button ID is 2. Now it’s sim-
ply a matter of sending a CDM_SETCONTROLTEXT
message (defined in CommDlg unit) to the appropriate dia-
log control. This is done in the same OpenDialogShow event
handler with a standard SendMessage function call.

Secure Data
Data security requires a lot of effort. There is no algorithm that’s
completely unbreakable, except perhaps the One-Time-Pad
31 February 1999 Delphi Informant
method. All other methods are some form of compro-
mise. The idea is to have a system that takes so much
effort to break that it becomes unfeasible in terms of
time and/or money required.

The CryptoAPI gives the developer a clean, uni-
form way to implement proven algorithms and
protocols, with minimal effort. But, best of all,
because it will be part of the operating system, all
kinds of applications will be able to use it seam-
lessly. At least, that’s the idea. ∆

The files referenced in this article are available on the
Delphi Informant Works CD located in
INFORM\99\FEB\DI9902MB.

Mujahid Beg has been programming in various languages for the past 10 years.
His primary development environments are Delphi and C/C++. He is the Director
of Systems Development for MediNet-EDI Solutions — a medical EDI services com-
pany located in Houston, TX. He can be reached at mujahid@insync.net.
Begin Listing Four — Initializing the desired CSP
constructor tCryptography.Create(Container, Provider,

Password: string; CanCreate: Boolean);
var

r: bool;

buff: array [0..1023] of Char;

size: dWord;

l, h: Byte;

begin
inherited Create;

hProv := 0;

hPassKey := 0;

fProviderName := '';

fContainerName := '';

fCryptVer := '0.0';

if CryptAcquireContext(hProv, PChar(Container),

PChar(Provider), PROV_RSA_FULL, 0) = False then
// Unable to acquire context, check if failure was due
// to absence of key container.
if (CanCreate) and (GetLastError = NTE_BAD_KEYSET) then

// Create a new key set for the current user.
if CryptAcquireContext(hProv, PChar(Container),

PChar(Provider), PROV_RSA_FULL,

CRYPT_NEWKEYSET) = False then
RaiseErr('Unable to aquire context');

// Get some info about the cryptography module.
// Name of the CSP.
size := sizeof(buff);

if CryptGetProvParam(hProv, PP_NAME,

@Buff, size, 0) = False then
fProviderName := 'Unknown'

else
fProviderName := StrPas(Buff);

// Name of the key container.
size := sizeof(buff);

if CryptGetProvParam(hProv, PP_CONTAINER,

@Buff, size, 0) = False then
fContainerName := 'Unknown'

else
fContainerName := StrPas(Buff);

The API Calls
// Version number.
size := sizeof(buff);

if CryptGetProvParam(hProv, PP_VERSION,

@Buff, size, 0) = False then
fCryptVer := '*.00'

else
fCryptVer :=

Format('%d.%d',[Integer(buff[1]),Integer(buff[0])]);

// Set password key.
if PassWord <> '' then

SetPassWord(UpperCase(PassWord));

end;

End Listing Four
Begin Listing Five — AllocAndLoadBuffer and
SaveAndFreeBuffer
// This function is responsible for opening a file for
// reading, and reading the contents in a buffer.
procedure tCryptography.AllocAndLoadBuffer(OpMode: tOpMode;

FileName: string; var buff: pByte; var BuffSize: dWord);

var
F: THandle;

SizeRead: DWORD;

TempBuff: array[0..cMagicTextLen] of Char;

pTempBuff: PChar;

begin
buff := nil;
// Open and read in the file.
F := CreateFile(PChar(FileName), GENERIC_READ, 0, nil,

OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, 0);

if F = INVALID_HANDLE_VALUE then
RaiseErr('Unable to open input file');

try
// Assuming filesize < 2 GB.
BuffSize := GetFileSize(F, nil);
// Check file header to verify file is encrypted.
if opMode = omDECRYPT then

begin
pTempBuff := @TempBuff;

// Read in the header.
ReadFile(F, pTempBuff^, cMagicTextLen,

SizeRead, nil);
if StrLComp(cMagicText,

pTempBuff, cMagicTextLen) <> 0 then
RaiseErr('Not an encrypted file: ' + FileName);

// Data size = File Size - Header Size.
Dec(BuffSize, cMagicTextLen);

end;

// Allocate buffer to hold entire contents of the file.
GetMem(buff, BuffSize);

try
ReadFile(F, buff^, BuffSize, SizeRead, nil);
if BuffSize <> SizeRead then

RaiseErr('Unable to read input file');

// Make sure we are not attempting to encrypt an
// already encrypted file.
if opMode = omENCRYPT then

if StrLComp(cMagicText, PChar(buff),

cMagicTextLen) = 0 then
RaiseErr('File is already encrypted: ' + FileName)

except
FreeMem(buff, BuffSize);

Buff := nil;
raise;

end;
finally

FileClose(F);

end;
32 February 1999 Delphi Informant
end;

procedure tCryptography.SaveAndFreeBuffer(OpMode: tOpMode;

FileName: string; var buff: pByte;

SaveSize, BuffSize: dWord);

// This function is responsible for opening a file for
// writing and saving the contents of the buffer.
var

F: THandle;

SizeWritten: DWORD;

begin
// Open file in write mode.
F := CreateFile(PChar(FileName), GENERIC_WRITE, 0, nil,

CREATE_ALWAYS, 0, 0);

if F = INVALID_HANDLE_VALUE then
RaiseErr('Unable to open input file');

// In Encryption mode — write a fixed file header before
// the actual encrypted data. This protects against
// multiple encryption attempts against the same file.
if opMode = omENCRYPT then

WriteFile(F, cMagicText, cMagicTextLen,

SizeWritten, nil);
WriteFile(F, buff^, SaveSize, SizeWritten, nil);
FileClose(F);

FreeMem(buff, BuffSize);

Buff := nil;

if SaveSize <> SizeWritten then
RaiseErr('Unable to write output file.');

end;

End Listing Five

33 February 1999 Delphi Informant

Greater Delphi
BDE / Networking

By Bill Todd
The BDE Made Easy
Sharing the BDE on a Network

Installing and maintaining Delphi applications that use the BDE (Borland
Database Engine) in a network environment is too costly if you install the BDE

and the application on every PC. It’s easy to solve half the problem by putting
your application’s EXE on the file server so that all users share a single copy.
When you need to install an update, you only have to do it once, and the new
version is immediately available to everyone. But what about the BDE?
Inprise recommends the BDE be installed on
each PC to improve performance. However,
the only performance gain is that the BDE
DLLs can probably be read into memory
faster from a local hard drive than from the
file server. Because the load time of the DLLs
is generally a minor component of overall
application performance — unless the net-
work is very slow — little is gained by
installing the BDE on each PC.

The alternative is to install the BDE on the
file server. Installing a single copy of the BDE
on the file server offers several major benefits:
1) You only have to install the BDE one

time in one location.
2) When you need to upgrade to a new ver-

sion of the BDE, you only need to install
the update one time in one location.

3) You can be certain that all users are
running the same version of the BDE
at all times.

4) Having all users share a single copy of the
BDE configuration file guarantees that all
users are using the same BDE settings.

5) If you need to add an alias, or change any
other BDE configuration setting, you
only need to make the change once, and
it immediately affects all users.

6) A centralized BDE installation makes it
easy to have your BDE applications con-
figure the PCs on which they run to use
the BDE the first time they run.
Using the techniques described in this article,
you can take a new PC out of its box and
connect it to the network, and the only thing
you have to do to run a BDE application is
create a shortcut to the EXE. There are other
benefits, as well. You can have different appli-
cations use different BDE configuration files,
or even different versions of the BDE. The
interesting thing is that there are no tricks
involved; the BDE was designed from the
beginning to allow a single, central copy to be
shared by multiple users.

There are two phases to the process of get-
ting applications to automatically configure
and use a central copy of the BDE. The
first is getting the BDE installed on the file
server. The second is adding code to your
program so it will automatically create the
BDE registry entries when it starts.

Phase One
Before you can use a file-server BDE installa-
tion, you must install the BDE on the file serv-
er. Neither the version of InstallShield Express
that comes with Delphi, nor the commercial
version of InstallShield Express allow you to
install the BDE anywhere but the user’s local
hard drive. One solution is to install the BDE
on one workstation, then copy the BDE direc-
tory to the file server. The disadvantage of this
technique is that it leaves the BDE registry
entries on the workstation pointing to the BDE

Figure 1: The BDE Administrator Options dialog box.

Greater Delphi
on the local hard drive. This can be easily overcome by letting
your application reset the BDE registry entries when it runs.

While you can change the registry entries to point to the server,
you can also avoid the problem by creating a set of installation
diskettes that install the BDE files as though they were an
application. This lets you put the BDE where you want it, and
doesn’t create the undesired registry entries. If your develop-
ment machine is connected to the network to which you’re
deploying, you can also copy the BDE directory from your
machine to the file server. If you use one of the Wise installa-
tion programs, you’ll have no problem because Wise lets you
install the BDE in any directory you wish.

Once the BDE is installed on the file server, you’ll need to set
the BDE configuration options in the BDE configuration file
on the file server. Choose Object | Open Configuration to
open the configuration file in the network BDE folder. Next,
choose Object | Options to display the BDE Administrator
Options dialog box shown in Figure 1.

Make sure the Windows 3.1 and Windows 95/NT radio button in
the Save for use with group box is selected. If you don’t set this
option, some of the configuration parameters will be stored
locally in the Windows registry instead of in the configuration
file. If settings are stored in the registry, they must be changed
on every workstation. However, setting the Windows 3.1 and

Windows 95/NT option causes all settings to be stored in the
configuration file, and causes the configuration file settings to
be used even if conflicting settings exist in the registry. You can
also create aliases, or change any other settings at this time.

Phase Two
The next step is to get your application to automatically cre-
ate the BDE registry entries each time it runs. This system
must meet the following requirements:
34 February 1999 Delphi Informant
All your applications must be able to deter-
mine the location of the BDE and its config-
uration file, and
you must be able to change the location of the
BDE easily.

This requires two .INI files. The first has the
same name as your application’s EXE — with an
.INI extension — and is located in the same
directory as the EXE. This file can contain any
of the following entries in its [BDE] section:

[BDE]

ConfigPath=f:\foo\bde\idapi.cfg

BDEPath=f:\foo\bde

Overwrite=True

IniPath=f:\foo\bde.ini

The ConfigPath entry contains the full path to,
and name of, the BDE configuration file. The
BDEPath entry supplies the path to the BDE
directory. By default, the code discussed later in
this article will only create the BDE registry entries

if they don’t exist. This prevents your program from changing
existing entries. But what if you need to move the BDE to a
new directory when a new file server is installed, or for some
other reason? The Overwrite entry solves this problem by
telling your program to create the BDE registry entries using
the information in the .INI file, even if they already exist. By
setting Overwrite to True, you could have several versions of
the BDE installed on your server, and have different applica-
tions use different versions. You could also have all the appli-
cations share the same BDE, but have different applications
use different BDE configuration files.

There is one disadvantage to this system: If you have 20
different Delphi applications, and you need to make a
change, you’ll have to change 20 .INI files. The IniPath
entry addresses this problem. If the IniPath entry is pre-
sent, all other entries in the BDE section of the applica-
tion .INI file are ignored, and the BDE settings are read
from the .INI file in the IniPath entry. This allows you to
have a single .INI file that controls the BDE settings for
many applications. This shared .INI file also contains a
[BDE] section, and can contain all the previously shown
values, except IniPath.

Listing Six (beginning on page 35) shows the code for the
TApplicationIniFile component that automatically config-
ures the BDE each time your application runs (this is
available for download; see end of article for details).
Although this is a component, and can be installed on the
Component palette, you probably won’t want to do so.
Instead, copy the unit file into your project directory, and
add it to your project. Because it’s likely you’ll have other
information unique to each application to store in the
application’s .INI file, adding this unit to each project lets
you easily customize the component to handle application-
specific settings.

Greater Delphi
The overridden constructor of TApplicationIniFile calls its
OpenAppIniFile method. OpenAppIniFile gets the path to
the application’s .INI file by using the Application.ExeName
property and changing the file extension to .INI. It then
checks for an IniPath entry in the [RemoteIniFile] section.
If it finds this entry, it opens the file to which it’s pointing.
This allows you to have a family of related applications
share a common .INI file.

The heart of TApplicationIniFile is the CreateBDEKeys method.
This method begins by setting the Boolean variable
BDEInstalled to True, and calling OpenBDEIniFile, a method
almost identical to OpenAppIniFile, except that it looks for the
IniPath entry in the [BDE] section of the application .INI file.
The method then retrieves and saves the value of the Overwrite
entry. The registry is accessed and updated using an instance of
TRegistry. After the TRegistry object is created, its LazyWrite
property is set to False to ensure that changes to the registry are
saved immediately.

The next step is to determine if the BDE is already
installed on this machine. The BDE is properly installed if
the ConfigFile01 and DLLPath entries exist under
KEY_LOCAL_MACHINE\Software\Borland\Database
Engine, and the BLAPIPath entry exists under
KEY_LOCAL_MACHINE\Software\BLW32. If any of
these keys are missing, the BDEInstalled variable is set to
False. First, Reg.OpenKey is called and passed to the
Software\Borland\Database Engine key. Next, Reg.ReadString is
used to read the ConfigFile01 and DLLPath keys. Reg.OpenKey
is called a second time to move to the Software\BLW32 key, and
Reg.ReadString is used to read the BLAPIPath value.

The final step is to create the BDE registry entries if the BDE
isn’t installed, or if the .INI file contains the Overwrite=True
entry. If you’ve looked at the Software\BLW32 key (using
Regedit, for example), you’ve seen that, in addition to the
BLAPIPath value, there are entries for each of the BDE
Language drivers. You don’t have to create these keys when you
install the BDE. However, if they’re present, you need to change
the path in each entry. The code creates a TStringList object
named LanguageKeys, and loads all the value names under the
Software\BLW32 key into the StringList by calling the TRegistry
object’s GetValueNames method. It then searches the StringList
by calling its IndexOf method to determine if the BLAPIPath
entry is present. If not, it’s added to the list. Finally, a for loop
iterates through the StringList, and changes the path for each key
to the BDE path that was read from the .INI file earlier. Another
call to Reg.OpenKey opens the Software\Borland\Database
Engine key. Two calls to Reg.WriteString create the ConfigFile01
and DLLPath entries.

For CreateBDEKeys to work, you must call it before the
program’s default BDE session is created. Therefore, the
only place you can put this call is in the initialization sec-
tion of one of your program’s unit files. The most natural
location is the initialization section of the main form’s
unit. Here’s an example:
35 February 1999 Delphi Informant
initialization
AppIni := TApplicationIniFile.Create(Application);

try
AppIni.CreateBDEKeys;

finally
AppIni.Free;

end;
end.

Conclusion
The advantages of installing the BDE on the file server and
sharing it across all users are so great, it’s surprising that Inprise
doesn’t recommend or, at least, document this option. It reduces
the cost of installing the BDE and every application that uses the
BDE initially, as well as the cost of installing BDE updates in the
future. Having your applications automatically create the BDE
registry entries offers similar benefits; you’ll never get another call
from a user who just got a new PC and none of the BDE appli-
cations run, even though the support techs copied all the files
from the old hard drive. With self-configuring applications and a
central BDE installation, anyone who can create a shortcut can
install a BDE application on a new workstation.

The only trick to making this system work is to make sure
the Windows 3.1 and Windows 95/NT compatibility option is
set in the BDE Administrator Options dialog box; this is
unfortunate. The Windows 95/NT only option offers no bene-
fits and, in my opinion, should be removed so that all BDE
configuration information is always stored in the BDE con-
figuration file. This would ensure that any BDE configura-
tion file could be safely shared. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\FEB\DI9902BT.

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is a Contributing Editor of Delphi
Informant, co-author of four database-programming books, author of over 60
articles, and a member of Team Borland, providing technical support on the
Inprise Internet newsgroups. He is a frequent speaker at Inprise conferences in
the US and Europe. Bill is also a nationally known trainer and has taught
Paradox and Delphi programming classes across the country and overseas. He
was an instructor on the 1995, 1996, and 1997 Borland/Softbite Delphi World
Tours. He can be reached at bill@dbginc.com or (602) 802-0178.
Begin Listing Six — AppIniFl.pas
unit AppIniFl;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics,

Controls,

Forms, Dialogs, IniFiles;

type
TApplicationIniFile = class(TComponent)
private

AppIni: TIniFile;

Greater Delphi
BDEIni: TIniFile;

AppIniPath: string;
protected
procedure OpenAppIniFile;

procedure OpenBDEIniFile;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
procedure CreateBDEKeys;

end;

procedure Register;

implementation

uses Registry;

const
cRemoteIniPathTag = 'IniPath';

cRemoteIniSection = 'RemoteIniFile';

cBDESection = 'BDE';

constructor TApplicationIniFile.Create(AOwner: TComponent);

begin
inherited;
OpenAppIniFile;

end;

destructor TApplicationIniFile.Destroy;

begin
AppIni.Free;

inherited;
end;

procedure TApplicationIniFile.OpenAppIniFile;

begin
AppIniPath :=

ChangeFileExt(Application.ExeName, '') + '.ini';

AppIni := TIniFile.Create(AppIniPath);

{ If there is a remote INI file path in the INI file,
open the remote INI file. }

AppIniPath := AppIni.ReadString(cRemoteIniSection,

cRemoteIniPathTag, '');

if AppIniPath <> '' then
begin
AppIni.Free;

AppIni := TIniFile.Create(AppIniPath);

end;
end;

procedure TApplicationIniFile.OpenBDEIniFile;

var
BDEIniPath: string;

begin
{ If there is a remote INI file path in the BDE section,

open that file, else set BDEIni to point to AppIni. }
BDEIniPath := AppIni.ReadString(cBDESection,

cRemoteIniPathTag, '');

if BDEIniPath <> '' then
BDEIni := TIniFile.Create(BDEIniPath)

else
BDEIni := AppIni;

end;

procedure TApplicationIniFile.CreateBDEKeys;

{ Creates the BDE Registry entries using values found in an
INI file with the same name as the application's EXE file
and located in the same directory. The INI file can
contain the following sections and entries.

[BDE]
ConfigPath=f:\foo\bde\idapi.cfg
BDEPath=f:\foo\bde
Overwrite=True
IniPath=f:\foo
36 February 1999 Delphi Informant
[IniFile]
IniPath=f:\foo

If the Overwrite=True entry is present any existing BDE
entries will be overwritten with the entries from the INI
file. If the IniPath entry is present the BDE entries
will be read from the file at that location with the same
name as the EXE and the extension .INI. This allows a
central INI file to be used even if the app is installed
on each workstation. }

const
cIniTrue = 'TRUE';

cOverwriteBDETag = 'Overwrite';

cIniConfigPathTag = 'ConfigPath';

cIniBDEPathTag = 'BDEPath';

cDatabaseEngineKey = '\Software\Borland\Database Engine';

cLanguageDriverKey = '\Software\Borland\BLW32';

cLanguageDriverTag = 'BLAPIPATH';

cConfigPathTag = 'configfile01';

cDllPathTag = 'dllpath';

var
Reg: TRegistry;

LanguageKeys: TStringList;

ConfigPath: string;
BDEPath: string;
OverwriteBDEStr: string;
S: string;
OverwriteBDE: Boolean;

BDEInstalled: Boolean;

I: Integer;

begin
BDEInstalled := True;

{ Open the INI file that contains the BDE information. }
OpenBDEIniFile;

{ Read the BDE DLL and Config file paths from the INI
file. }

ConfigPath := BDEIni.ReadString(cBDESection,

cIniConfigPathTag, '');

BDEPath := BDEIni.ReadString(cBDESection,

cIniBDEPathTag, '');

if Copy(BDEPath, Length(BDEPath), 1) = '\' then
BDEPath := Copy(BDEPath, 1, Length(BDEPath) - 1);

{ Determine if BDE section contains an Overwrite
parameter. If so, and if the value is True, the BDE
registry settings in the INI file will overwrite any
existing settings on the user's computer. }

OverwriteBDEStr := BDEIni.ReadString(

cBDESection, cOverwriteBDETag, '');

if UpperCase(OverwriteBDEStr) = cIniTrue then
OverwriteBDE := True;

Reg := TRegistry.Create;

Reg.LazyWrite := False;

try
Reg.RootKey := HKEY_LOCAL_MACHINE;

Reg.OpenKey(cDatabaseEngineKey, True);

{ See if any of the BDE registry keys are missing. If
so, all the keys will be created from the values in
the INI file. }

if Reg.ReadString(cConfigPathTag) = '' then
BDEInstalled := False;

if Reg.ReadString(cDllPathTag) = '' then
BDEInstalled := False;

Reg.OpenKey(cLanguageDriverKey, True);

if Reg.ReadString(cLanguageDriverTag) = '' then
BDEInstalled := False;

{ If the BDE is not installed, or if the INI file's BDE
section contains the Overwrite=True entry create the
BDE keys. }

if (not BDEInstalled) or (OverwriteBDE) then begin
{ Write the BLW32 language driver subkeys. }
if BDEPath <> '' then begin

LanguageKeys := TStringList.Create;

{ If there are no language driver keys, add the
BLAPIPATH key to the list so it will be created.}

try
Reg.GetValueNames(LanguageKeys);

Greater Delphi
if LanguageKeys.IndexOf(

cLanguageDriverTag) = 0 then
LanguageKeys.Add(cLanguageDriverTag);

for I := 0 to Pred(LanguageKeys.Count) do begin
{ If this entry is the BLAPIPATH entry, just

write the BDEPath. If it is the entry for one
of the language driver files, extract the
file name from the existing entry and add it
to the end of the BDE path. }

if UpperCase(LanguageKeys[I]) =

cLanguageDriverTag then
begin

S := BDEPath;

end
else
begin
S := Reg.ReadString(LanguageKeys[I]);

S := BDEPath + '\' + ExtractFileName(S);

end;
Reg.WriteString(LanguageKeys[I], S);

end; // for
finally
LanguageKeys.Free;

end; // try
end; // if
{ Write the DatabaseEngine subkeys. }
Reg.OpenKey(cDatabaseEngineKey, True);

if ConfigPath <> '' then
Reg.WriteString(cConfigPathTag, ConfigPath);

if BDEPath <> '' then
Reg.WriteString(cDllPathTag, BDEPath);

end; // if
finally
Reg.Free;

end; // try
end;

procedure Register;

begin
RegisterComponents('DGI', [TApplicationIniFile]);

end;

end.

End Listing Six
37 February 1999 Delphi Informant

38 February 1999 Delphi Informant

At Your Fingertips
Delphi / Tips

By Robert Vivrette

Figure 1: A simple exampl
They Were There All Along
Fun with SysUtils

T hose handy functions we need are often right under our noses — and we
aren’t even aware of it. Occasionally, I dig through the VCL source to see

what interesting functions are there that I hadn’t seen before. This month’s
“At Your Fingertips” is devoted to often-overlooked functions inside Delphi’s
SysUtils unit.
e

Finding the Switch When the Lights Go Out
Many applications support command-line
parameters. They’re often used to control the
initial state of the application, or to provide
information about a configuration or docu-
ment file to open.

One of the more awkward things a program-
mer must do is determine whether com-
mand-line switches have been passed into an
application. This is often complicated by the
fact that the switches can be in any order,
might be a different case than expected, or
even worse, might be a string value with
embedded spaces. In the past, we had to
write our own routines to determine this
information. Generally, it involved scanning
the command line, examining every character
to see if it fit what we expected.

Help has arrived! FindCmdLineSwitch is an
extremely handy routine that does all this
for you. It’s surprisingly powerful and flexi-
ble. All you need to do is pass in the switch
for which you’re looking, followed by the
 of how FindCmdLineSwitch works.
characters that define a switch (usually a
hyphen or a slash) and a Boolean value to
indicate if you want the test to be per-
formed with case sensitivity.

Figure 1 shows a simple example of how this
function works. The demonstration shows
the command line present when the applica-
tion was launched (available through the
global variable CmdLine). It then allows you
to type in a switch value to test for. When
you click on the Test! button, it tells you if
the switch exists on the command line.

There are a wide variety of things for
which you can test. For example, the rou-
tine correctly finds strings with embedded
spaces (as long as you put them in quotes
on the command line). It can also spot
numbers, or switches with trailing on/off
characters like the plus (+) or minus (-)
signs. Here’s all the code necessary to run
this demonstration:

procedure TForm1.FormCreate(Sender: TObject);

begin
Label2.Caption := CmdLine;

end;

procedure TForm1.BitBtn1Click(Sender: TObject);

begin
if FindCmdLineSwitch(Edit1.Text,[

'-','/'],True) then
Label4.Caption := 'Switch Exists!'

else
Label4.Caption := 'Switch Not Present';

end;

: A demonstration of StringReplace.

At Your Fingertips
The Hunt Is On
Finding a file on a disk drive is a fairly common pro-
gramming chore. Often, you’ll use the FileExists func-
tion to determine if a particular file exists. The prob-
lem with FileExists is that it only looks at a single
location on a disk drive. If the file name passed into
FileExists includes path information, it will look
there. If it has no path information, it will look at the
current directory for the file.

But what if the file could potentially be in one of a
number of locations? You could do something like this:

if not FileExists('C:\MyApp\string') then
if not FileExists('C:\MyApp\Dir1\string') then

if not FileExists('C:\MyApp\Dir2\string') then
...

But that starts getting to be a real maintenance nightmare!

Enter FileSearch. This function accepts two parameters: The
first is the name of the file for which you are looking, and the
second is a list of directories (separated by semicolons) in
which to perform the search. For example, the code:

TheFile := FileSearch(

'string', 'C:\MyApp;C:\MyApp\Dir1;C:\MyApp\Dir2');

would perform a search similar to the example shown previously.

If FileSearch finds the file in any of the directories, it will
return a fully qualified path and file name to that file. If it
doesn’t find it, it returns an empty string. This comes in par-
ticularly handy when you’re looking for a string that might
be in more than one location.

FileSearch simulates the behavior present in the Path com-
mand used by DOS and Windows. In fact, if you want to
search the path currently defined on the machine, you can
also use the Windows API function SearchPath. The Win32
API Help discusses this function in more depth.

A String in Need of Replacing
Delphi includes a number of interesting string-handling rou-
tines for inserting and deleting strings from within another
string, two of which are Insert and Delete.

However, these functions will only perform a single insertion
or deletion at a time. What happens if you want to replace all
occurrences of a string with another string? In the past, pro-
grammers often had to build a repeat or while loop, where the
string would be examined for a string using the Pos command.
When the string was found, you could delete it with Delete,
and insert the new string using Insert. The loop would contin-
ue until no more occurrences of the search string existed.

This problem is solved by means of one of the more over-
looked functions in SysUtils: StringReplace. This function

Figure 2
39 February 1999 Delphi Informant
takes a string and replaces in it all occurrences of one sub-
string with another substring. It then returns the new
string as its result.

The first parameter used is the string through which you’ll
be scanning. Next comes the string to search for and
delete, followed by the string to put in its place. Last
comes a parameter that allows you to specify a set of flags.
Currently, these flags can be rfReplaceAll, which tells the
function to replace all occurrences of the string rather than
just the first one, and rfIgnoreCase, which tells the func-
tion to be case insensitive.

Figure 2 shows a demonstration program on the use of
StringReplace. Clicking the Do It! button replaces all occur-
rences of text in the Search For edit box with the text in the
Replace With edit box. The results are shown in the Result edit
box. Here is the code that accomplishes this:

procedure TForm1.BitBtn1Click(Sender: TObject);

begin
Edit4.Text:= StringReplace(

Edit1.Text,Edit2.Text,Edit3.Text,

[rfReplaceAll,rfIgnoreCase]);

end;

There is one added capability worth noting: StringReplace
allows for the possibility of multi-byte characters.

Conclusion
One of the best training tools an aspiring Delphi developer
has at his or her disposal is to look through the functions
available in the source code provided with Delphi
(Professional and Client/Server packages). Sometimes you
find little gems, such as those outlined here, that can save
many hours of programming effort. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\FEB\DI9902RV.

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached via e-mail at RobertV@mail.com.

40 February 1999 Delphi Informant

New & Used

By Warren Rachele

JPEG and LE
GIF and TIFF
TIFF formats
BMP formats
Icons and cu
PCX formats
Kodak forma
DICOM form
Exif formats
Windows me
Photoshop 3
Portable net
TrueVision T
Encapsulate
SUN raster f
WordPerfect
Macintosh p
Windows AV

TIFF CCITT a
LEAD 1-bit f
Miscellaneou

Figure 1: Som
LEADTOOLS.
LEADTOOLS Imaging 10
A Sharp and Focused Imaging Toolkit

Users have come to expect the ability to use graphic and document images
in their work. Such workaday applications as product databases now rou-

tinely offer an image of the product in addition to the text description.
Paperless document systems require the ability to acquire and annotate their
collected documents. All this is complex enough, but the number of formats
available for storing graphic images makes the task of including image pro-
cessing even more difficult. LEAD Technologies, Inc. has taken all this into con-
sideration, and provides a one-stop solution.
LEADTOOLS Imaging is an imaging toolkit
of considerable depth that should be consid-
ered when you need to integrate full-featured
image processing into an application. The
toolkit, which you can purchase off the shelf,
is the same LEADTOOLS technology that’s
been licensed by such heavy hitters as Corel,
Color and Grayscale
AD compressed (.JPG and .CMP)
 with LZW compression

rsors(.ICO and .CUR)
 (.PCX and .DCX)
ts (.PCD and .FPX)
at (.DIC)
(.TIFF and .JPG)
tafile format (.WMF)
.0 format (.PSD)
work graphics format (.PNG)
ARGA format (.TGA)
 PostScript (.EPS)
ormat (.RAS)
 format (.WPG)
icture format (.PCT)
I (.AVI)

Bi-tonal (1-Bit)
nd other FAX formats
ormat (.CMP)
s 1-bit formats (.MAC, .IMG, and .MSP)

e of the over 60 file formats supported by
Microsoft, and Hewlett Packard. Now in ver-
sion 10, the LEADTOOLS Imaging package
is a collection of more than 600 functions,
properties, and methods that provide high-
and low-level control for image processing
through a single ActiveX control.

The toolkit, implemented through
LEADTOOLS, offers imaging technology
in 15 broad categories: scanning, color
conversion, display, multimedia effects,
annotation, image processing, compression,
image format import/export filters, imag-
ing common dialog boxes, database imag-
ing, Internet imaging, optical character
recognition (OCR), screen capture, multi-
media, and the FlashPix extension. It works
with any development tool that supports
ActiveX components and, as expected, it
worked flawlessly with Delphi 4.

Installation
Plan to devote some time for installation.
An installation program creates the appro-
priate directory structures and registers the
ActiveX controls with Windows; the rest is
up to you. The documentation for the
installation process is brief, so you’ll need to
be familiar with Delphi’s Import ActiveX
Control process to successfully integrate the
LEADTOOLS controls into your IDE.
Each component must be individually
imported from the list of registered controls.

c
l
W
f
t
a
F
E
f
s

A
W
M

Figure 2: This image is stored in LEAD’s CMP format.

New & Used

Figure 3: The Oilify effect renders the image as an oil painting.
Once the proper paths are set, each of the visual and non-
visual components takes its place on the ActiveX page of the
Delphi Component palette. LEAD includes all the controls
they make on the CD, and all of them are registered with
Windows; thus, they appear during the import process.
Depending on the package you purchase, you may not be
licensed to use all of them, and the controls will not function
until a license number unlocks them. Don’t clutter up your
palette with non-functional controls.

Using the LEAD Control
Putting the toolkit to work is as simple as placing the LEAD
Main control onto a form in your project. This control encap-
sulates the majority of the imaging functionality of the toolkit.
41 February 1999 Delphi Informant
Displaying an image in the sizable control is simply
a matter of passing the image’s file name as a para-
meter to the LEAD control’s Load function. Once
the image is defined, a wide array of manipulation
is possible. The Main control is also fully database-
aware, and can load images directly from a BLOb
field.

The LEAD Main image control can be left at its
default size and automatically sized to the client
window during the display process. If the size of
the image exceeds the client size, scroll bars can be
automatically added. It isn’t necessary to predefine
the image type before loading it; image files carry
information in their headers that define the storage
format, and LEADTOOLS reads this to decide
which filter is appropriate to use. LEADTOOLS
supports more than 60 file formats (see Figure 1).
The image displayed in Figure 2 is a sample stored
in LEAD’s proprietary CMP format.

The greatest strength of LEADTOOLS Imaging is
its image-processing capabilities; much more can
be done with images beyond simply displaying
them. Image manipulation is the core of the
LEADTOOLS Imaging product, and version 10
expands its stable to support over 2,000 effects,
more than 80 shapes, and over 30 gradients. The
ViewMaster project has implemented a few of
these features through menu options. The image
in Figure 3 has had the Oilify effect applied to it,
rendering the image in the form of an oil paint-
ing. Nearly all the artistic effects available to the
user can be interactively adjusted to meet the users
needs. For example, the Slider control is used to
determine the depth of the Neighborhood setting,
modifying the sharpness of the brush strokes used
in the “painting.”

LEAD Technologies, through all its iterations, has
learned from its customers and adapted to their
common uses for the controls. To this end, many
of the commonly used methods and properties
have been encapsulated in dialog boxes for the

onvenience of the developer. The Imaging Common Dialog
ibraries provide a set of common dialog boxes that combine

indows dialog-box functionality with imaging features
rom LEADTOOLS. Placing the non-visual LEADDlg con-
rol on a form incorporates the libraries into your project,
nd gives you access to extended dialog boxes for FileOpen,
ileSave, ColorResolution, Image Processing/Filtering, and
ffects. Based on a programmer-determined set of user inter-

ace flags, the FileOpen dialog box adds or removes features
uch as the preview window and the File Information button.

 feature new to version 10 is the Pan Window. The Pan
indow is a scaled view of the bitmap being displayed in the
ain control. It becomes an active control that allows the user

New & Used

Figure 4: The ScanMaster demonstration program.
to display different regions of the image without using the
scroll bars. For example, if an image is zoomed in the Main
control, the Pan Window displays the original image. The user
can use the cursor that appears over the Pan Window to shift
the displayed area of the main image to a specific point.

Image Acquisition
In addition to displaying and manipulating image data,
LEADTOOLS is adept at acquiring images. The ActiveX con-
trol supports TWAIN devices in its native form, and optional-
ly supports ISIS input devices. Implemented directly through
the Main control, the TWAIN interface provides all the neces-
sary functionality to add image acquisition: device selection,
acquisition, and error management. The Main control’s file-
save methods and properties are used to determine the final
file-type characteristics. The TWAIN interface allows the pro-
grammer to choose from two development paths, depending
on the target device. One choice that can be used with a scan-
ner, such as the HP ScanJet that was used for testing in this
article, is to let the scanner’s own software handle the settings
for the scan. In the ScanMaster demonstration program, this
method was implemented through the Get It button. Few set-
tings need to be programmatically managed using this
method. A pair of calls to the TwainSelect and TwainAcquire
methods will handle the job of acquiring the image for your
program. Figure 4 shows the demonstration program after
acquiring an image and placing it in the Main control.

The programmer can also exercise complete control over
nearly all aspects of the image acquisition process. The
TWAIN device, and all the applicable settings, can be con-
trolled from within the program, or through the user inter-
face. The second button, The Hard Way, uses this develop-
ment path, then displays some of the settings on the status
42 February 1999 Delphi Informant
panel that were internally manipulated. Internally
controlled acquisition bypasses the scanner soft-
ware, and relies on the application settings to man-
age the process.

Acquiring data from the screen is another area in
which LEADTOOLS shines. Simple, rectangular
regions of the screen can be captured directly using
the Main control alone. To extend the options and
control over the screen capture function,
LEADTOOLS includes a separate, non-visual con-
trol that encapsulates a greater range of methods and
properties. The LEADTOOLS Screen Capture con-
trol can capture a wide variety of regions from the
screen: FullScreen, ActiveWindow, ActiveClientArea,
MenuUnderCursor, WindowUnderCursor,
SelectedObject, MouseCursor, and Wallpaper. An
area can also be selected using the freehand tool or a
number of capture containment shapes, including
circle, square, ellipse, and rounded-corner rectangles.
In addition to screen capturing, LEADTOOLS can
extract icon, bitmap, and cursor resources from 16-
or 32-bit Windows EXE and DLL files.

Internet Imaging
LEADTOOLS offers two alternatives for supporting Internet
images. The first is a Netscape plug-in that works with
Navigator or Internet Explorer. The plug-in DLL enables the
browser to display any of the LEADTOOLS-supported
image formats. This control is designed for use by HTML
programmers to provide support for image data contained in
your desktop application, or received through an Internet
connection. Among other server requirements, the control
requires that Height and Width values be embedded into the
page. When the image is displayed on the page, a right
mouse-click activates a menu offering options to copy to the
Clipboard, zoom in and out, return the image to normal size,
and save as a supported file format.

Purchase What You Need
LEAD Technologies has extensively reorganized their product
line. In previous incarnations, LEADTOOLS users could
select the modules to include in their toolkit. With the excep-
tion of FlashPix support, the purchase of individual classes
has disappeared; the package includes all formats, and you
pick the ones you want.

The software reviewed here is the LEADTOOLS Imaging
package. All the other toolkits build upon it. LEADTOOLS
Imaging Pro includes the 16- and 32-bit APIs, which allow
programmers to choose between a high-level component
interface, or working at a lower level through direct interac-
tion with the DLLs.

LEADTOOLS Multimedia opens access to audio and video
tools. Programmers have access to three new capabilities:
audio and video, including AVI and MPEG; capture from
any Window’s Video Capture Device, such as VCR or

New & Used
Camcorder; and Internet streaming video. LEADTOOLS
Multimedia Pro includes the APIs needed for low-level access
to the DLLs.

LEADTOOLS Document Express includes all the technol-
ogy included in the Multimedia toolkit, and expands it to
meet the specialized demands of the document imaging
market. The package includes the tools necessary to incor-
porate annotation of images through text, graphics, and
sticky notes, and numerous other document processing
features. These come in the form of new filters that allow
the user to perform operations on images, such as despeck-
le, deskew, and other clean-up functions, as well as ultra-
fast rotation of the image. The LEADTOOLS Document
Express Suite includes the Xerox TextBridge, a full-
featured OCR class.

LEAD also offers LEADTOOLS Medical Express for special-
ized, medical image processing. Images from MR and CT
scanners are in a high-resolution format named DICOM.
The Medical Express toolkit includes filters for this format
that allow multiple-level gray-scale mapping and separation
through a bit-range. It also includes all the capabilities
included in the Multimedia packages.

LEAD has also modified their license agreement. Previous
versions of the license required royalty payments based on
the number of copies of your application that were sold.
With the exception of the Document Express, Document
Express Suite, and Medical Express packages, and the
FlashPix module, the imaging technology is now royalty-
free. These packages require a written royalty agreement on
file with LEAD before their distribution. Another licensing
issue that arises with the Imaging packages is support for
GIF and TIFF LZW formats. This technology is copyright-
and patent-protected by the Unisys Corporation, so you
must license it from them before unlocking support for it in
LEADTOOLS.

Documentation
The quality of the documentation is the biggest negative
issue that I identified with the LEADTOOLS products.
The documentation for LEADTOOLS, with the exception
of a slim, 61-page summary of features, is provided in
PDF format and through Windows Help files. With a
product this extensive, online documentation makes learn-
ing an onerous process; the back-and-forth of locating
topics, pages, and references is better suited to the printed
page. Printed manuals for all the products are available at
an additional cost.

Learning to implement the ActiveX control is a test of your
abilities to decipher and extract meaning from the terse state-
ments contained in the 1,364 pages of documentation for the
Main control alone. The introductory sections refer to the
product in the most general of terms. For example, to load an
image into the control, you are instructed to use the follow-
ing method: LOAD Method.
43 February 1999 Delphi Informant
If the process were that simple,
this would be acceptable, but
there are other steps involved in
using the control. To locate
these, you must find the section
in the documentation that refers
to your chosen development
tool. The majority of the docu-
mentation for Delphi users
focuses on version 2, with a new,
very brief chapter for version 4.
Code snippets with some com-
ments are provided to teach you
how to use the control’s features.
A property and method reference
is included in the manual, but
for the most part, it refers back
to the tool-specific examples for
expansion on the topic.

The Windows Help files are for-
matted much the same as the manual, but are available at the
push of 1. The code snippets, when provided, can be
quickly copied into your program to speed the development
process. Plan on a long, steep learning curve to fully use the
LEADTOOLS technology.

Conclusion
If you need any form of image processing in your develop-
ment efforts, LEADTOOLS Imaging is an outstanding pack-
age to include in your toolbox. The depth and quality of the
classes are outstanding, and the amount of functionality you
can quickly add to an application is simply amazing. As you
work with the controls and discover the capabilities available,
you’ll find yourself implementing functionality in your appli-
cation that probably wasn’t a part of the original specification.

The documentation and installation provide bumps in an
otherwise smooth implementation. Although the majority
of the documentation is written for Delphi 2, the controls
worked flawlessly with Delphi 3 and 4. Once located, the
Help files also worked without fail. Current users of
LEADTOOLS should consider this a must-have upgrade.
The new features and increased speed make it worth the
upgrade costs, although the integration of the new control
into an existing project will take some work. ∆

LEADTOOLS Imaging 10 is an out-
standing package, providing a one-
stop solution for Delphi developers
who wish to answer the demand for
applications with full-featured image
processing capabilities. This off-the-
shelf toolkit provides high- and low-
level control for image processing
through a single ActiveX control. The
installation process is a bump in an
otherwise smooth implementation.

LEAD Technologies, Inc.
900 Baxter St.
Charlotte, NC 28204

Phone: (800) 637-4699 or
(704) 332-5532
Fax: (704) 372-8116
E-Mail: sales@leadtools.com
Web Site: http://www.leadtools.com
Price: US$495

Warren Rachele is Chief Architect of The Hunter Group, an Evergreen, CO software
development company specializing in database-management software. The com-
pany has served its customers since 1987. Warren also teaches programming,
hardware architecture, and database management at the college level. He can be
reached by e-mail at wrachele@earthlink.net.

http://www.leadtools.com

TextFile
Tom Swan, author of Delphi 4 Bible,
has had a long and prolific publishing
career, documenting numerous pro-
gramming languages and environments.
The respect his books receive lends an
additional note of credibility to Delphi
as a development tool. Although the
reader level is categorized as “beginning
to advanced,” this work is light on
beginner topics and heavily weighted
toward the advanced programmer look-
ing for task-specific information.

Swan begins by reviewing Delphi 1, and
reiterates the key features of each version
since before introducing the new features
of Delphi 4. Features such as code com-
pletion, tool-tip expression evaluation,
and the Module Explorer are reviewed in
greater detail. Chapter 1 concludes with a
feature that is often the best in each chap-
ter, the Expert-User Tips. At the end of
each chapter, Swan provides a list of quick
shots and insights into Delphi program-
ming. This mixture of hints, ideas, and
fixes is an extremely valuable resource —
one that readers will return to repeatedly.
The remaining chapters in Part I expand

on this quick survey of the Delphi envi-
ronment. Forms and components are
briefly discussed, and some basic projects
pull the beginning programmer into the
RAD world. The programmer learns to
place components on forms, and set the
appropriate properties and code methods
to build the simple projects. To support
the beginning programmer, a minimal
introduction to the Pascal language is
unfortunately missing from this guide.

Part II explores the development of the
user interface. Delphi 4 Bible takes a task-
oriented approach to developing the user
interface, showing the reader how to com-
plete each step of the process. The first
task explored is programming the key-
board and mouse. As with each of the
task chapters, Swan introduces the com-
ponents and methods used to include
these services in an application. By the

Delphi 4 Bible
44 February 1999 Delphi Informant
end of Part II, the reader will have
explored areas that include menus, but-
tons and check boxes, toolbars, lists, text
of all types, files and directories, and dia-
log boxes. Because each of the elements of
the user interface was explored in discrete
fashion, the reader will not have seen all
of these tasks coalesce into a complete
application. Don’t worry, Swan has a plan.

The application as a whole is the sub-
ject of Part III. Having covered the user
interface components common to most
applications in the previous section,
Swan is free to concentrate on the
“guts” of an application. These chapters
are not in-depth references; rather,
there’s enough information in each to
give the reader a taste of how Delphi
supports the development of different
types of applications. The experienced
programmer will realize that the “appli-
cations” discussed are often found
together in a single application; still, the
single-topic chapters work well.

Swan covers graphics applications, print-
er applications, and working with the
Clipboard, DDE, and OLE. Chapters
dealing with database applications and the
development of charts and reports are too
brief; these topics often fill entire books.
However, Swan succeeds in providing the
essence of the task. All the information is
well presented and, again, the Expert-User
Tips that conclude each chapter are wor-
thy of careful examination.
The final chapter is a grab bag of

advanced techniques and topics. Ranging
from the creation of a console application,
to creating a DLL, to creating Internet
applications, the chapter is fun to read
and explore. However, the depth of some
of this material could have been expanded
to prevent the reader from wondering
how to fully implement some of the ideas.
What makes the chapter work are the
broad strokes Swan uses to paint the
many areas in which Delphi can serve the
programmer. Tempted to fire up Turbo
Pascal for a quick DOS utility? Not after
you see how easily a CRT application can
be created in Delphi.

The book includes a CD-ROM con-
taining all code from the book. It’s
unlikely you’ll use it, however, given the
size of the sample programs. I find that
concepts are reinforced by creating the
sample projects and typing the code.
Tom Swan is an excellent writer; his

prose is clear, and is not disrupted by poor
attempts at humor. Should you buy
Delphi 4 Bible? Not if your programming
skills are at the beginning stage. There is
little here that will help the novice pro-
grammer advance. Advanced users may
find much of the information in the book
repetitive, though the Expert-User Tips
are worthy of two or three reads. This
book is aimed squarely at intermediate
programmers looking to broaden their
Delphi programming skills.

— Warren Rachele

Delphi 4 Bible by Tom Swan, IDG
Books Worldwide, 919 E. Hillsdale
Blvd., Suite 400, Foster City, CA
94404, http://www.idgbooks.com.

ISBN: 0-7645-3237-5
Price: US$49.99
(953 Pages, CD-ROM)

http://www.idgbooks.com

File | New
Directions / Commentary

Toward a Stronger Delphi Community

In the “Developer Ethics” column I wrote last September, I explored the darker side of our community: cer-
tain sleazy, shameless “developers” — despicable rip-off artists who undermine the hard work of talented

developers by stealing their software. Fortunately, they’re a tiny minority.
In stark contrast, our Delphi community is
rich with developers who make positive con-
tributions, freely sharing the fruits of their
work with the rest of us. I’ll discuss some
notable examples. Interestingly, I’ll also
touch on a gray area of situations that can
be interpreted positively, or negatively,
depending upon your perspective.

Sharing the wealth. We all enjoy getting
something for free, right? The developer
who distributes his or her tools freely also
benefits, making a name in the industry.
With the Internet, such distribution has
become almost trivial in its ease. We can
find numerous examples of developers who
have become very well known using this
strategy. A recent one is Gerald Nunn.
Because of his popular freeware library,
GExperts (which I hope to write about in
an upcoming issue), many of you already
know his name. There are many more
examples of these innovative writers who
have made great tools freely available —
Marco Cantù, Ray Lischner, and Bob
Swart, to name a few.

The abundance of freely available Delphi
tools has greatly enhanced this develop-
ment environment. If you doubt the pop-
ularity of freeware/shareware in the
Delphi community, consider the popular-
ity of the major Web sites like the Delphi
Super Page. Such sites have enhanced the
Delphi community by making
freeware/shareware components and tools
easily available. And there are some real
gems out there. Many come with source
code, so we can learn new techniques
while acquiring useful tools. This has
definitely made our community stronger.

The Internet has strengthened our
community in other ways. In the past
couple of years, the Delphi Internet
venues have expanded exponentially.
Once just a handful of CompuServe
forums and Usenet newsgroups, Delphi
communication venues now include list
servers, search engines, and sophisticated
newsgroups.
45 February 1999 Delphi Informant
Groups of developers also establish infor-
mal relationships with each other, sharing
discoveries, tools, and code freely, while
critically evaluating each other’s work as
beta testers. Project Jedi, its ups and downs
notwithstanding, has been a resilient and
impressive endeavor. Even during times of
little or no activity on the discussion
threads, developers have been quietly work-
ing on various projects.

Another major strength of the Delphi
community is the impressive collection of
tool creators and third-party companies.
What generally sets them apart from the
average shareware developer is the quality
of the tools they provide, including sup-
port and documentation. While you may
pay much less — or nothing — for a
shareware or freeware tool, you cannot
expect to get the same quality.

David and Goliath. The gray area I
alluded to is the heated battles that can
occur when a freeware/shareware author
decides to compete with a commercial
product. While the up-and-coming
developer may have nothing to lose, this
is hardly the case with the established
vendor. Commercial companies must
continue to make a profit. Otherwise,
they cannot provide new and improved
tools. If they find themselves under-
mined by other developers who essential-
ly clone their components or tools, their
profits could very well shrink.

One could argue, “If a full-time compa-
ny can’t compete with some guy working
10 hours a week, then that company
shouldn’t be in business.” But consider
the counter argument: “A free product
that is similar in functionality to a sell-
ing product has the effect of decreasing
the perceived value of that commercial
product.” How so? If the commercial
product sells for $100 and has 20 fea-
tures, while the competing freeware
product duplicates 16 of them, how will
the potential customer compare them?
That customer may conclude that there
are just four unique features in the com-
mercial product and value it accordingly.
You don’t have to be a Wall Street guru
to see the business implications inherent
in that scenario.

Further, the freeware tool may have more
bugs, may not be as well designed as the
commercial product, or may come up
short on documentation and customer
support. But a buyer who’s not familiar
with the products may not be aware of
these possible problems. Conceivably, he
or she might focus solely on the feature
set of the two products, and base the per-
ceived value of the commercial product
on the sum of its unique feature set. In
the previous example, the potential cus-
tomer would place the value of the com-
mercial product (at $5 a feature) at just
$20. If the company were to reduce its
selling price to a figure close to this, it
might risk bankruptcy.

Clearly this is one gray area, and there may
be others. However, even those developers
who decide to play the role of David
against Goliath are seldom satisfied with
simply cloning the giant’s product; they
usually want to add something new and
distinctive. Do you agree with this assess-
ment? On the whole, with our superior
development tool, with our strong lines of
communication, and with our many tal-
ented developers, we indeed have a strong
Delphi community. ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at
Kentucky State University, specializing in
music composition and music theory. He has
been developing education-related applica-
tions with the Borland languages for more
than 10 years. He has published a number of
articles in various technical journals. Using
Delphi, he specializes in writing custom com-
ponents and implementing multimedia capa-
bilities in applications, particularly sound
and music. You can reach Alan on the
Internet at acmdoc@aol.com.

	Table of Contents
	Delphi Tools
	PRICE Systems Announces ForeSight 2.0
	HyperAct Announces eAuthor Help 3.05
	Pervasive Announces Developers Kit
	Lingscape Announces MultLang Suite 2.11 for Delphi and C++Builder
	Wise Introduces Installation Suites
	Automagic Ships Y2K Components
	WetStone Announces SMARTCrypt 1.2
	Absolute Solutions Releases ShortcutBar for Delphi 1.65
	Sylvan Ascent Introduces SylvanMaps/OCX-3
	Black Diamond Offers Components for Delphi
	4Developers LLC Announces COM Explorer 1.5

	Delphi News
	JBuilder 2 Wins Two Awards
	Inprise Announces Brazilian Subsidiary
	Inprise Offers to License JBuilder to Microsoft
	Inprise to Acquire Apogee Information Systems
	InterBase Releases InterBase 5.5
	DPR Launches New Delphi Course

	On the Cover
	Sequential Record Searches
	TDataSetRecord-searching Methods
	Searching with Parameterized Queries
	Searching Performance
	Conclusion

	Informant Spotlight
	The Client Key
	Sharing State
	Role-based Security
	Programmatic Security
	The MTS Explorer
	Declarative Security
	Packaging Properties
	Remote Clients via DCOM
	Client-side Transactions
	Callbacks and References
	Activities
	Tips for Development
	Conclusion
	References

	Algorithms
	The Basics
	Linear Probing
	Quadratic Probing
	Pseudo-random Probing
	Conclusion
	Begin Listing One — The TLinearHashTableClass
	Begin Listing Two — The TQuadraticHashTableClass
	Begin Listing Three — The TRandomHashTableClass

	Columns & Rows
	Model One: Four-tier “Straight-pipe” Model
	Model Two: Inheritance
	Model Three: Peer-level Middle Partitions
	How Do We Do This?
	Packets
	The Elements
	Conclusion

	The API Calls
	CryptoAPI Basics
	Keys to the Safe
	Passing the Data
	A Non-standard Dialog Box
	Secure Data
	Begin Listing Four — Initializing the desired CSP
	 Begin Listing Five — AllocAndLoadBufferand SaveAndFreeBuffer

	Greater Delphi
	Phase One
	Phase Two
	Conclusion
	Begin Listing Six — AppIniFl.pas

	At Your Fingertips
	Finding the Switch When the Lights Go Out
	The Hunt Is On
	A String in Need of Replacing
	Conclusion

	New & Used
	Installation
	Using the LEAD Control
	Image Acquisition
	Internet Imaging
	Purchase What You Need
	Documentation
	Conclusion

	TextFile - Delphi 4 Bible
	File I New

